Žaibo energetika ir jo potencialo analizė

Juozas Baublys, Algimantas Ambrazevičius

Generolo Jono Žemaičio Lietuvos karo akademija, Šilo g. 5a, LT-2055 Vilnius

Linas Markevičius

Kauno technologijos universitetas, Studentų g. 48, LT-3031 Kaunas

Valentinas Zaveckas

Vilniaus Gedimino technikos universitetas, Saulėtekio al. 11, LT-2040 Vilnius

1. ĮVADAS

Atmosferos elektros išlydis, žaibas, yra vienas pavojingiausių žmonėms ir gyvuliams gamtos reiškinių. Kasmet žaibas sukelia šimtus gaisrų, traumuoja žmones bei gyvulius, sugadina techninius įrenginius bei įvairius aparatus, jautrius viršįtampiams ir elektromagnetiniams impulsams. Lietuvoje 1997 m. kilo 121, 1998 m. – 98, 2000 m. – 100, 2001 m. vasarą – net 161 gaisras dėl žaibo, Lietuvos energetinėje sistemoje kasmet keliasdešimt kartų atsijungia aukštos įtampos elektros perdavimo linijos ir žaibo metu sugadinama šimtai brangių aukštos įtampos įrengimų [1].

Mokslui seniai žinomi elektros reiškiniai – dėl žaibo atsiradę viršįtampiai [4, 6–8, 12, 13], tačiau technikos poreikiams dar nėra pakankamai ištirti. Surasta, kad intensyvaus žaibavimo metu dėl stiprių elektros laukų ore ir žemėje susidaro naudingi azoto oksidai ir silpna azoto rūgštis žemėje, virstantys trąšomis [7]. Susidariusieji elektros potencialai žaibo metu tiek statiniuose, tiek žemėje saugos atžvilgiu vis dar yra mokslinio aiškinimosi objektai. Jų tyrimas yra sudėtingas, bet labai svarbus tiek moksliniu, tiek praktiniu aspektais, ypač tobulinant bei kuriant naujas efektyvesnes vidines ir išorines apsaugos nuo žaibo priemones [4].

ISSN 0235-7208. Energetika. 2002. Nr. 3

Analizuojama žaibo energetika ir jo potencialai statiniuose, įvairiose konstrukcijose ir medžiuose, kaip elektromagnetinių bangų sukelti reiškiniai. Sudarytas matematinis didžiausių potencialų statiniuose skaičiavimo, panaudojant impulsinių bangos atspindžių teoriją, modelis. Nustatyti pagrindiniai parametrai, turintys įtaką potencialo susidarymui. Didžiausią įtaką statinio potencialui turi statinio sąlyčio su žeme vietoje banginė varža ir žaibo impulso bangos fronto trukmė. Išnagrinėtas žaibo potencialo pasiskirstymas žemėje įtrenkus žaibui bei jo poveikis žmonių ir gyvulių saugumui. Gauti rezultatai leidžia kryptingai planuoti tolimesnius tyrimus tobulinant apsaugos nuo žaibo priemones.

Raktažodžiai: žaibas, potencialas, elektromagnetinė banga, impulsas, įtampa, saugumas, apsauga, banginė varža, bangos fronto trukmė, statinys

> Objektų pažeidimų intensyvumas priklauso nuo perkūnijos trukmės. Perkūnijos trukmė apibūdinama vidutiniu žaibavimo valandų skaičiumi per metus. Per 25 metus nustatėme, kad Lietuvoje įvairiuose rajonuose žaibuoja vidutiniškai nuo 24 iki 50 val. per metus [1]. Palyginti su kitomis šalimis, tai nedaug. Pvz., Vietname žaibuoja 300–350 val. per metus [7]. Pagal Europoje galiojančius standartus, vidutinė metinė perkūnijos trukmė Lietuvos rajonuose suskirstyta į dvi grupes: iki 40 valandų per metus ir per 40 valandų [2].

> Żaibo pataikymo į statinius apytikris skaičius per metus N apskaičiuojamas iš empirinės formulės [2]:

$$N = [(S + 6 h) (L + 6 h) - 7,7 h^{2}] n \cdot 10^{-6}; \quad (1)$$

čia h – statinio aukštis m, S – statinio plotis m, L – statinio ilgis m, n – vidutinis metinis žaibo smūgių į 1 km² žemės paviršių skaičius toje vietoje, kurioje yra statinys (n = 2, kai perkūnijos trukmė iki 40 val. per metus; n = 4, kai per 40 val.).

2. DARBO TIKSLAS

Žaibavimo metu pavojinga liestis prie elektros srovei laidžių statinių sienų, medžių kamienų, būti neapsaugotu statiniu viduje ir naudotis elektriniais prietaisais, nes tuose objektuose gali būti aukšti elektros potencialai.

Ypač pavojingais tampa tie statiniai arba atramos, prie kurių prijungtos metalinės ar kitos elektros srovei laidžios jungtys (laidai, antenos, atotampos ir kt.), padidindamos tikimybę patekti žaibo potencialams i tuos statinius. Potencialu pasiskirstymo statiniuose ir kituose objektuose negalima nustatyti eksperimentiškai. Potencialai statiniuose priklauso nuo daugelio veiksnių ir jie yra labai dinamiški [6]. Žaibo poveikis dvejopas. Pirmasis yra tiesioginis žaibo išlydis, kitas - išlydžio metu sukeliamas įvairių dažnių magnetinis laukas, sukeliantis viršįtampius elektros tinkluose, telefono bei informacijos perdavimo tinkluose ir elektrai laidžiose konstrukcijose.

Darbo tikslas - išnagrinėti nuo žaibo impulso susidariusius potencialus statiniuose (atramose), taip pat medžiuose bei žemėje, nustatyti šių potencialų priklausomybę nuo įvairių veiksnių (statinių aukščio, įžemėjimo banginės varžos, žaibo bangos sklidimo greičio, impulso bangos fronto trukmės). Gauti rezultatai bus panaudoti kuriant ir tobulinant apsaugos nuo žaibo įrenginius bei aparatus tiek buityje, tiek elektroenergetikoje.

3. TYRIMU METODIKA

Šiame darbe nagrinėtas potencialu, susidariusiu nuo žaibo impulsinės bangos, pasiskirstymas statinyje, medyje ir žemėje.

1 pav. pateikta žaibo sukeltos impulsinės bangos sklidimas statinyje be atotampų (a) ir su atotampomis (b). A taške pavaizduota pradedanti sklisti žaibo sukelta elektromagnetinė impulsinė banga, savo kanale ore turinti įtampos potencialą ϕ_0 . Impulsinės bangos srovę ore, atotampose, atramose bei žemėje riboja banginės varžos Z_b , priklausančios nuo srovės kanalo savitujų induktyvumo L ir elektrinio talpio C[1]. Banginė varža lygi:

$$Z_b = \sqrt{\frac{L}{C}} \quad (\Omega) \,. \tag{2}$$

Patekusi į tašką A impulsinė žaibo elektromagnetinė banga sklinda toliau visais elektrai laidžiais kanalais ir pasiekia vietą, kurioje suformuota kita banginė varža (N taške). Bangos dalis atsispindi ir grįžta atgal į A tašką, o kita dalis sklinda toliau į žemę. Bangos sklidimas (lūžimas) ir atsispindėjimas kartojasi daug kartu.

Žaibo smūgio į A tašką (1 pav.) metu susidariusį potencialą skaičiuosime panaudodami impulsinių bangos atspindžių metodiką [1].

1. Statinys, neturintis atotampų. Pirmoji žaibo smūgio banga ϕ'_{A} per statinio A tašką lūžta tokio dydžio:

1 pav. Žaibo sukeltos impulsinės bangos sklidimas statiniu: ϕ_0 – žaibo potencialas, I_0 – impulsinė srovė, Z_0 , Z_{μ} , Z_{z} – banginės varžos atitinkamai žaibo kanale, atotampose ir ižemiklyje; α , β – koeficientai (lūžio ir atspindžio); h – statinio aukštis: a – be atotampu; b – su atotampomis; c – žaibo impulso parametrai: t_{e} – bangos fronto trukmė μs ; t_i – impulso trukmė μs

$$\varphi_{A}' = \frac{2Z_{A}}{Z_{A} + Z_{0}} = \varphi_{0} \alpha_{0A};$$
(3)

čia ϕ_0 – žaibo bangos potencialas žaibo kanale V;

 Z_{A} – banginė statinio (atramos) varža Ω; Z_{0} – banginė žaibo kanalo varža Ω; α₀₄ – lūžio koeficientas taške A.

Potencialo ϕ'_A banga, pasiekusi N tašką, dalinai pereina (lūžta) į įžeminimo varžą Z_z , o kita dalis atsispindi nuo N taško į atramos viršų, į A tašką. Atsispindėjusios bangos įtaka potencialo susidarymui statinyje priklauso nuo jo aukščio. Lūžusios dalies potencialas N taške yra:

$$\varphi_{A\check{Z}} = \varphi'_A \cdot \alpha_{0A} \cdot \frac{2Z_{\check{Z}}}{Z_{\check{Z}} + Z_A} , \qquad (4)$$

o atsispindėjusios bangos potencialo dalis nuo N taško į A tašką yra:

$$\varphi_{\check{Z}A} = \varphi_A^{\prime} \cdot \beta_{\check{Z}A} = \varphi_0 \cdot \alpha_{0A} \cdot \frac{Z_{\check{Z}} - Z_A}{Z_{\check{Z}} + Z_A};$$
(5)

čia β_{ZA} – atspindžio koeficientas taške N; Z_{Z} – banginė varža statinio lietimosi su žeme N taške.

Atsispindėjusi banga $\varphi_{\check{Z}A}$ pasieks A tašką ir vėl šios bangos dalis lūš A taške, pereidama į žaibo kanalą ore $\varphi'_{\check{Z}A0}$, o kita dalis vėl atsispindės nuo A taško žemyn ir pasieks N tašką $\varphi_{\check{Z}A\check{Z}}$. Šių bangų dalys bus atitinkamai:

$$\varphi'_{\underline{Z}A0} = \varphi_0 \cdot \alpha_{0A} \cdot \beta_{\underline{Z}A} \cdot \alpha_{A0}$$
(6)

ir
$$\varphi_{\check{Z}A\check{Z}} = \varphi_0 \cdot \alpha_{0A} \cdot \beta_{\check{Z}A} \cdot \beta_{A\check{Z}}$$
 (7)

Tokie bangos lūžiai ir atspindžiai taškuose teoriškai vyks daug (pvz., n) kartų. Sudėję visas atskiras atitinkamas dedamąsias, turime potencialo N taške išraišką:

$$\sum_{\substack{i=0, \dots, n}}^{1} \varphi_{A} = \varphi_{0} \alpha_{0A} \cdot \alpha_{A\check{Z}} + \varphi_{0} \alpha_{0A} \cdot \alpha_{A\check{Z}} \cdot \beta_{\check{Z}A} \beta_{A\check{Z}} + \varphi_{A\check{Z}} \cdot \alpha_{A\check{Z}} \cdot \beta_{A\check{Z}} + \dots + \varphi_{0} \alpha_{0A} \cdot \alpha_{A\check{Z}} + \varphi_{A\check{Z}} +$$

Jet
$$n \to \infty$$
, tal

$$\sum_{n=1}^{\infty} \varphi_A = \varphi_0 \alpha_{0A} \cdot \alpha_{A\tilde{Z}} \frac{1}{1 - \beta_{\tilde{Z}A} \cdot \beta_{A\tilde{Z}}}.$$
(9)

2. Prie statinio prijungtos atotampos. Nagrinėjant potencialo dydžio susidarymą statinyje, prie kurio prijungtos atotampos, reikia įvertinti žaibo bangos lūžio koeficientus atotampose.

Atotampų Z_{tr} ir statinio Z_A banginės varžos tarpusavyje sujungtos lygiagrečiai (1 pav., b). Šių banginių varžų ekvivalentinė varža Z_{ek} yra:

$$Z_{ek} = \frac{1}{\frac{1}{Z_A} + \frac{T}{Z_{tr}}};$$
(10)

čia Z_{tr} – atotampos banginė varža, T – atotampų skaičius.

Bangai, sklindančiai iš žaibo kanalo į atotampą ir į statinį A taške, lūžio koeficientas yra:

$$\alpha_{0A} = \frac{2Z_{ek}}{Z_{ek} + Z_0} = \frac{2}{1 + \frac{Z_0}{Z_A} + \frac{TZ_0}{Z_{tr}}}.$$
 (11)

Atspindžio koeficientas bangai, atsispindinčiai nuo įžeminimo varžos taške N į statinį, yra tas pats, kaip ir (5) formulėje $\beta_{\tilde{Z}A}$.

Atotampoms ir žaibo kanalui bendra ekvivalentinė banginė varža yra:

$$Z_{ek}^{\prime} = \frac{1}{\frac{T}{Z_{tr}} + \frac{1}{Z_0}} = \frac{Z_0 \cdot Z_{tr}}{TZ_0 + Z_{tr}}.$$
 (12)

Atspindžio koeficientas bangai, sklindančiai žemyn nuo A taško į N tašką, yra:

$$\beta_{\tilde{Z}A} = \frac{Z_{ek}^{/} - Z_A}{Z_{ek}^{/} + Z_A} = \frac{\frac{Z_0 \cdot Z_{tr}}{TZ_0 + Z_{tr}} - Z_A}{\frac{Z_0 \cdot Z_{tr}}{TZ_0 + Z_{tr}} + Z_A}.$$
(13)

Tai pačiai bangai lūžio koeficientas A taške yra:

$$\alpha_{\check{Z}A} = 1 + \beta_{\check{Z}A}; \tag{14}$$

čia Z₀ – banginė varža žaibo kanale.

Žaibo smūgio metu į statinį su atotampomis susidaręs potencialas skaičiuojamas tokiu pat metodu, kaip ir (8) formulėje. Įtampos potencialas statinio taške A yra:

čia τ – laikas, per kurį grįžta atsispindėjusi banga per statinį, kurio aukštis h; $\tau = \frac{h}{v}(\mu s)$; v – žaibo bangos sklidimo greitis m/s.

(15) lygtyje koeficientai (1; $1_{2\tau}$; $1_{4\tau}$) yra kartotiniai skaičiai, rodantys, kad atskiros potencialo dalys bus nuo žaibo smūgio pradžios, t. y. 0; 2τ ; 4τ (µs) laiko ir t. t. Didžiausias potencialas statinio taške susidaro, kai baigiasi žaibo frontas t_f (1 pav., c), t. y. kai potencialas statinio taške A nebedidėja:

$$\sum \varphi_{A\max} = \alpha_{0A} \varphi_0 [1 + \beta_{\check{Z}A} \frac{1 + \beta_{A\check{Z}}}{1 - \beta_{\check{Z}A} \cdot \beta_{A\check{Z}}} - \frac{2\beta_{\check{Z}A} (1 + \beta_{A\check{Z}}) \cdot \tau}{(1 - \beta_{\check{Z}A} \cdot \beta_{A\check{Z}})^2 \cdot t_f}].$$
(16)

Pagal sudarytas (9) ir (16) lygtis skaičiuosime ir analizuosime susidariusius statiniuose žaibo maksimalius potencialus, priklausančius nuo įvairių veiksnių.

4. REZULTATAI IR JŲ APTARIMAS

Gautos metodinės lygtys duoda galimybę sudaryti grafikus ir analizuoti didžiausių potencialų priklausomybes nuo statinių įžemiklių banginių varžų, statinių aukščio, nuo žaibo impulso bangos sklidimo greičio bei impulso bangos fronto trukmės.

Įrašę į (9) lygtį $\alpha_{0,4}$; $\alpha_{A\dot{Z}}$; $\beta_{\dot{Z}A}$ ir $\beta_{A\dot{Z}}$ koeficientų reikšmes, išreikštas banginėmis varžomis iš (4), (11) ir (13) formulių, gauname didžiausio potencialo, susidariusio žaibo metu statinio taške A, neturinčio atotampų, išraišką:

$$\sum_{n=1}^{\infty} \phi_{A \max} = \phi_0 \frac{2Z_{\check{Z}}}{Z_0 + Z_{\check{Z}}} = \phi_0 \alpha_{0\check{Z}} .$$
 (17)

(17) lygtis parodo, kad tarpinės grandinės tarp taškų A ir N (1 pav., a), t. y. visame statinyje, įtampos potencialo susidarymui žaibo metu statinio banginė varža įtakos neturės. Šiuo atveju didžiausią įtaką potencialo susiformavimui turi žaibo bangos potencialas φ_0 ir dėl statinio sąlyčio su žeme susidariusi banginė varža $Z_{\dot{z}}$.

Didžiausio potencialo, susidariusio statinio taške A (1 pav., b), kai prijungta atotampa, iš (16) lygties išraiška yra tokia:

$$\sum \varphi_{A\max} = \alpha_{0A} \varphi_0 (M - B \frac{\tau}{t_f}); \qquad (18)$$

čia

$$M = 1 + \beta_{\tilde{Z}A} \frac{1 + \beta_{A\tilde{Z}}}{1 - \beta_{\tilde{Z}A} \cdot \beta_{A\tilde{Z}}}; \quad B = \frac{2\beta_{\tilde{Z}A}(1 + \beta_{A\tilde{Z}}) \cdot \tau}{(1 - \beta_{\tilde{Z}A} \cdot \beta_{A\tilde{Z}})^2 \cdot t_f}$$

Koeficientai α_{0A} , $\beta_{\tilde{Z}A}$ ir $\beta_{A\tilde{Z}}$ randami iš (5), (11) ir (13) lygčių.

(18) lygčiai nagrinėti priimta sąlyga: $\varphi_0 = 10$ MV; $Z_0 = 300 \ \Omega$; $Z_A = 300 \ \Omega$; $Z_{tr} = 400 \ \Omega$. Skaičiavimai atlikti eant įvairioms įžeminimo varžoms $Z_{\tilde{Z}} = 5$ – $-60 \ \Omega$; esant įvairioms žaibo impulso bangos fronto trukmėms $t_f = 1,5$ –9 µs; įvairiems statinių aukščiams h (10, 20, 30 ir 40 m).

Skaičiavimų duomenys pavaizduoti 2–5 paveiksluose.

2 paveiksle gautos kreivės $\varphi_{max} = f$ (Zž), t. y. žaibo didžiausio potencialo statinyje priklausomybė nuo banginės varžos žemės ir statinio sąlyčio vietoje (įžemiklio). Žaibo potencialai statiniuose susidaro kur kas mažesni, kai statinių įžemiklių banginės varžos mažos, tačiau netiesiog proporcingai įžemiklių banginių varžų dydžiams. Tam turi įtakos žaibo impulso

2 pav. Potencialo statinyje priklausomybė nuo įžemiklio banginės varžos $\varphi_{max} = f(Z_{\underline{i}}), \varphi_0 = 10$ MVA; $t_f = 1,5 \mu s$; l - h = 10 m; 2 - h = 20 m; 3 - h = 30 m; 4 - h == 40 m: a - be atotampų, b - su atotampomis

bangos lūžusios ir atsispindinčios dalių skirtingumas, priklausantis nuo banginių varžų. Taigi padidėjus įžemiklių varžoms 30 kartų, potencialas statiniuose padidėja tik 5–6 kartus! Didėjant įžemiklių banginėms varžoms, didžiausi potencialai statiniuose didėja netolygiai: nuo 5 Ω iki 20 Ω varžų potencialai didėja staigiai, po to lėtėja, o nuo 30 Ω didėja tolygiai. Esant mažoms įžemiklių banginėms varžoms, didelę įtaką potencialo dydžiui turi statinių aukštis (2 pav.). Tai gerai iliustruoja 3 paveiksle gautos santykinio

koeficiento $k\varphi = f(Z\check{z})$ kreivės; čia $k\varphi = \frac{\varphi_{\max_{40}}}{\varphi_{\max_{10}}}$ ($\varphi_{\max_{40}}$ – didžiausias potencialas 40 m aukščio statinyje; $\varphi_{\max_{10}}$ – didžiausias potencialas 10 m aukštyje). Kaip matyti iš kreivių, šis santykis potencialų, susidariusių skirtinguose aukščiuose, taip pat priklauso nuo įžemiklių banginių varžų ir nuo impulso bangos fronto trukmės t_f Esant mažoms banginėms varžoms, skirtinguose aukščiuose potencialai ženkliai skiriasi. Didėjant įžemiklių varžoms nuo 5 Ω iki 20–30 Ω , potencialai skiriasi 1,5 karto, kai $t_f = 9$ µs, ir 2,5 karto, kai $t_f = 1,5$ µs. Šis skirtumas išnyksta esant 60 Ω ir didesnėms įžemiklių banginėms varžoms, nes koeficientas $k\varphi$, kaip matyti iš kreivių (3 pav.), artėja prie vieneto.

Kiekvienu atveju, keičiantis tiek statinių aukščiui, tiek įžemiklių banginei varžai, didžiausias potencialas priklauso nuo žaibo impulso bangos fronto trukmės t_f . Tai aiškiai rodo (4 pav.) kreivės $\varphi_{max} = f(t_f)$. Žaibo impulso bangos fronto trukmė yra atsitiktinis dydis, priklausantis nuo susiformavusio žaibo impulso. Kuo statesnė žaibo impulso banga, t. y. kuo ma-

3 pav. Santykinio koeficiento priklausomybė nuo įžemiklio banginės varžos $k\varphi = f(Z_z)$: $1 - t_f = 1,5 \mu s$; $2 - t_f = 3 \mu s$; $3 - t_f = 6 \mu s$; $4 - t_f = 9 \mu s$

žesnė impulso bangos fronto trukmė (t_f) , tuo didesni susidaro potencialai statiniuose visais nagrinėtais atvejais (4, 5 pav.), todėl, atliekant įvairius susidariusių potencialų tolimesnius skaičiavimus, manome, kad tikslinga analizuoti didžiausius potencialus tik esant mažiausios žaibo impulso bangos fronto trukmei, t. y. kai $t_f = 1,5$ µs.

4 pav. Potencialų priklausomybė nuo žaibo impulso fronto trukmės $\varphi_{max} = f(t_f)$; $a - Z_{z} = 5 \Omega$, $b - Z_{z} = 30 \Omega$, $c - Z_{z} = 60 \Omega$: I - h = 10 m; 2 - h = 20 m; 3 - h = 30 m; 4 - h = 40 m

5 pav. Potencialo priklausomybė nuo statinio aukščio $\varphi_{max} = f(\mathbf{h}); a - Z_{\underline{z}} = 5 \Omega, b - Z_{\underline{z}} = 30 \Omega, c - Z_{\underline{z}} = 60 \Omega: 1 - t_f = 1,5 \mu s; 2 - t_f = 3 \mu s; 3 - t_f = 6 \mu s; 4 - t_f = 9 \mu s$

6 pav. Potencialo pasiskirstymas žemėje pataikius žaibui į medį: U_{ze} – žingsnio įtampa, U_{pr} – prisilietimo įtampa

Analizė (2 pav., b) rodo, kad prijungtos prie statinio ilgos atotampos statinyje potencialą sumažina beveik du kartus. Tačiau potencialas lieka gana pavojingas saugumo atžvilgiu, net esant mažoms įžemiklių banginėms varžoms.

Žaibas dažniausiai traumuoja žmones ir gyvulius netiesiogiai pataikydamas į juos. Žaibo smūgis būna juntamas 15–20 m atstumu nuo tos vietos, į kurią trenkia žaibas.

Trenkus žaibui į medį (6 pav.), žaibo elektros impulsinė srovė praeina medžio kamienu ir sklinda į visas puses nuo medžio į žemę, kaip ir statinyje. Srovė, tekėdama medžiu ir žeme, sukelia įtampos kritimą medžio ir žemės varžose. Medžio potencialas φ_{max} būna šimtų tūkstančių arba net milijonų voltų, kaip ir statiniuose. Potencialo medyje dydis priklauso nuo medžio šaknų sąlyčio su gruntu, t. y. nuo susidariusios banginės varžos žemėje. Tarp medžio ir žemėje esančių taškų, nutolusių daugiau kaip 20 m nuo pažeistos vietos, šis potencialas sumažėja beveik iki nulio. Potencialo pasiskirstymas aplink medį parodytas 6 paveiksle kreivėmis; jis priklauso nuo impulsinės srovės I_0 dydžio, žemės grunto savitosios varžos p ir atstumo nuo medžio x. Impulsinė srovė būna nuo 20 iki 200 kA. Elektropotencialai apie žaibo pažeistą medį, pratekant impulsinei srovei, pasiskirsto beveik pagal hiperbolę. Todėl bet kurio taško potencialas x atstumu nuo medžio tekant impulsinei srovei bus:

$$\varphi = \int_{x}^{\infty} d\varphi = \frac{I_0 \cdot \rho}{2\Pi} \int_{x}^{\infty} \frac{dx}{x^2} = \frac{I_0 \cdot \rho}{2\Pi x} \quad (V);$$
(19)

čia I_0 – žaibo impulsinė srovė A; ρ – savitoji grunto varža Ω m; x – atstumas nuo medžio iki pasirinkto taško m.

Žmogų, stovintį po medžiu ir liečiantį jį, veikia prisilietimo įtampa, kuri būna lygi maždaug 30% medžio viso potencialo žaibo iškrovos metu. Ji gali būti dešimčių ir net šimtų tūkstančių voltų. Prisilietimo įtampos dydis priklauso nuo to, kokiu atstumu stovi žmogus, liesdamas medį. Žmogus traumuojamas, nes jo kūnu prateka srovė I_{zm} į žemę. Šios srovės poveikis žmogui ar kitam gyvam organizmui priklauso nuo jos stiprumo, jos tekėjimo trukmės, taip pat nuo jos tekėjimo kelio per organizmą. 7 paveiksle pavaizduota statistinė analizė Lietuvoje elektra traumuotų žmonių, kai srovės tekėjimo kelias žmonių kūnais buvo nevienodas [5]. Paveiksle matyti, kad srovei tekant per žmogų iš rankos į ranka, net 90% nukentėjusiųjų lieka gyvi, o jai tekant kūno išilgine ašimi (ypač per dešinę ranką į kairę koją), beveik kas antras žmogus miršta. Žmogui prisilietus prie medžio žaibo impulso metu, srovė, pratekanti žmogumi, I_{zm} ir žmogaus varža R_{zm} priklauso nuo prisilietimo įtampos dydžio U_{pr} . Šios priklausomybės apytikriai išreiškiamos empirinėmis formulėmis [10]:

$$R_{zm} = 77(U_{pr} + 10) + 0.3 \ (\Omega); \ I_{zm} = U_{pr} \ (U_{pr} + 10)/(0.3U_{pr} + 80) \ (A).$$
(20)

Žmogus ar gyvulys, neliečiantys medžio, gali būti traumuoti srove, susidariusia nuo **žingsnio įtampos**. Ši įtampa yra potencialų skirtumas, susidaręs prie abiejų kojų. 10–15 m atstumu nuo medžio žingsnio įtampa žmogui praktiškai būna nepavojinga. Nors arklys (6 pav.) yra nuo medžio toliau negu žmogus, jo padėtis nepalanki, nes jo priekinės kojos yra ties φ_3 potencialo apskritimu, o užpakalinės – ties φ_4 potencialu. Arklio žingsnio įtampa bus:

$$U_{z_{\sigma}} = \phi_3 - \phi_4$$
 (V). (21)

Ši įtampa gerokai didesnė negu žmogaus, o srovė nuo vienų kojų prie kitų teka per keturkojo gy-

7 pav. Kelio, kuriuo teka elektros srovė per žmogų, įtaka elektros traumos pasekmėms: I – ranka–ranka; II – ranka–koja; III – koja–koja; IV – liemuo–koja; 1 – nukentėjusieji; 2 – likę gyvi

vulio visus jautrius organus, pažeisdama juos. Todėl gyvuliai žūsta, arba žaibas sužaloja juos dažniau negu žmones.

Žaibų išvengti neįmanoma, bet apsisaugoti nuo jų galima. Tam reikia tinkamai įrengti žaibosaugos įrenginius, kurie yra gana sudėtingi inžineriniai įrenginiai. Būtina apskaičiuoti perdengimo zonas ir varžas pagal statinio kategorijas [3, 11], parinkti tinkamas medžiagas bei gerai atlikti pavojingų potencialų analizę. Tik profesionaliai suprojektuota ir įrengta apsauga nuo žaibo išlydžių užtikrina statinių bei žmonių saugumą.

5. IŠVADOS

1. Statiniuose žaibo viršįtampių didžiausias potencialas yra 1,5–3 kartus mažesnis negu žaibo kanalo iniciatyvinis bangos potencialas φ_0 ir didesnis esant didesnėms įžemiklių banginėms varžoms bei statinių aukščiams.

2. Didžiausias žaibo viršįtampių potencialas statiniuose, esant įvairiems jų aukščiams ir įžemiklių banginėms varžoms, priklauso nuo žaibo impulso bangos fronto trukmės t_f (3–5 pav.). Praktiniuose skaičiavimuose tikslinga nagrinėti žaibo potencialo poveikį viršįtampių susidarymui statiniuose tik esant mažiausiai impulso bangos fronto trukmei, priimtai standartuose, t. y. kai $t_f = 1,5$ µs.

3. Žaibo viršįtampių potencialas φ_{max} statiniuose labai keičiasi nuo statinių aukščio (iki 4 kartų) esant tik mažoms įžemiklių banginėms varžoms ($Z_z \leq 5 \Omega$) ir santykiniam koeficientui k_{\varphi} = 3-4, o esant didelėms varžoms ($Z_z \geq 50-60 \Omega$) nuo aukščio praktiškai nepriklauso ((3), (5), (11), (13)).

4. Prijungtos prie statinio ilgos atotampos 2–3 kartus sumažina žaibo potencialą statinyje.

Gauta 2001 11 15

Literatūra

- 1. Baublys J. Gamybinių objektų apsauga nuo žaibo. Vilnius, 1990. 50 p.
- Zaveckas V. Pastatų ir kitų statinių žaibosauga. Vilnius, 1999. 30 p.
- Respublikinės statybos normos RSN 139–92. Pastatų ir statinių žaibosauga. Vilnius, 1992.
- Radzevičius L. Kai kurie viršįtampių pavojingumo kriterijai. VIII International Conference Overvoltages in power–electronic–and–computer–engineering. Białystok, 1997. P. 97–102.
- Juškevičius Z. Darbo traumos Lietuvos energetikos sistemoje 1949–1999 m. Vilnius, 2000. P. 36–37.
- Стекольников И. С. Физика молнии и грозозащита. Москва: Изд-во АН СССР, 1943.
- Амбразявичус А. Теплообмен при закалке газов. Москва, Вильнюс, 1983. С. 193.

- Анастасиев П. И., Залепецкий М. М., Фролов Ю. А. Молниезащита зданий и сооружений. Москва: Энергия, 1966. С. 80.
- Справочник по проектированию электропривода, силовых и осветительных установок / Под. ред. Я. М. Большмана, В. И. Круповича, М. Л. Самовера. Москва: Энергия, 1975. С. 650–661.
- Дулицкий Г. А., Комаревцев А. П. Электробезопасность при эксплуатации электроустановок напряжением до 1000 В. Москва, 1988. С. 19.
- Инструкция по устройству молниезащиты зданий и сооружений. РД34.21.122–87. Москва, 1989. С. 38.
- Der Elektrounfall. Herausgegeben von K. Brikmann und H. Schaefer. Spinger-Verlag. Berlin, Heidelberg, New York, 1982.
- 13. Encyclopaedia of Occupation Health and Safety. International Labour Office. Geneva. Third (revised) edition.

Juozas Baublys, Algirdas Ambrazevičius, Linas Markevičius, Valentinas Zaveckas

LIGHTNING ENERGY AND ANALYSIS OF ITS POTENTIAL

Summary

The electrical potentials of the lightnings after they strike buildings or other structures are investigated as phenomena of the impulse of the electromagnetic waves. In order to calculate the highest potential in the structures, a mathematical model according to the impulse wave reflection theory has been created. The main parameters that influence the highest potential in the structures have been determined. The wave resistance of the ground, the rise time of the lightning impulse wave and the height of the structure have the maximum influence on the potential. The distribution of the lightning's potential on the ground and the safety of people and animals are investigated. The results of the investigation permit to a purposeful planning of the process and to make improvements in the defense from lightning.

Key words: lightning, potential, electromagnetic wave, impulse, voltage, safety, defense, resistance of the wave, rise time of the impulse, structure

Юозас Баублис, Альгимантас Амбразявичус, Линас Маркявичус, Валянтинас Завяцкас

ЭНЕРГЕТИКА МОЛНИИ И АНАЛИЗ ЕЁ ПОТЕНЦИАЛА

Резюме

Создавшиеся электропотенциалы при попадании молнии в здания и сооружения исследуются как импульс электромагнитных волн. Согласно теории отражения импульсной волны, создана математическая модель для расчета максимального потенциала в сооружении после попадания молнии. Наибольшее влияние на максимальный потенциал оказывают волновое сопротивление в земле, время нарастания импульса и сама высота здания. Рассмотрены распределение потенциала молнии в земле и безопасность людей и животных. Полученные результаты позволяют целенаправленно планировать исследования, направленные на совершенствование защиты от молнии.

Ключевые слова: молния, потенциал, электромагнитная волна, импульс, напряжение, безопасность, защита, волновое сопротивление, время нарастания импульса, сооружение