Chemical composition of essential oils of *Marrubium vulgare* L. and *Marrubium incanum* Desr. grown in Poland

Grażyna Zawiślak*

Department of Vegetable and Medicinal Plants, University of Life Sciences in Lublin, 58 Leszczyński Street, 20-068 Lublin, Poland *Marrubium vulgare* L. is a plant that is grown in Poland for medicinal purposes. *Marrubium incanum* Desr. grows primarily in plant collections in Polish botanical gardens. The present study compared the essential oil content in *Marrubium vulgare* L. and *Marrubium incanum* Desr. as well as the qualitative and quantitative composition of their essential oils. The essential oil content in the dried herb of *Marrubium vulgare* L. was 0.05%, while in the herb of *Marrubium incanum* Desr. it was 0.04%. This study showed the presence of 34 compounds in the oil of *Marrubium vulgare* L. and 20 compounds in the oil of *Marrubium incanum* Desr. The main components of the oil of *Marrubium vulgare* L. were as follows: E-caryophyllene (25.91–32.06%), germacrene D (20.23–31.14%) and δ -amorphene (8.38–10.22%), while in the oil of *Marrubium incanum* Desr. the following compounds were predominant: germacrene D (32.46–37.87%), E-caryophyllene (22.49–30.79%) and α -cadinol (14.36–17.87%).

Key words: *Marrubium vulgare* L., *Marrubium incanum* Desr., essential oil, E-caryophyllene, germacrene D, δ-amorphene

INTRODUCTION

The genus *Marrubium* sp. comprises about 40 plant species [1]. These plants contain essential oil, and the composition of essential oils of various plant species of the genus *Marrubium* sp. has been the subject of research for many researchers across the world [2–11]. *Marrubium vulgare* L. and *Marrubium incanum* Desr. belong to the most known species of this genus [1].

Marrubium vulgare L. grows in the wild in Poland, but this herb is collected only from plantations [12]. *Marrubium incanum* Desr. is rarely cultivated in our country and it usually grows in botanical gardens. Herbal raw material from *Marrubium vulgare* L. is the herb [12]. Many researchers have indicated multifaceted therapeutic activity of *Marrubium vulgare* L. [12–15]. In the dried herb of *Marrubium vulgare* L., essential oil is found at an amount of about 0.05% [16]. The oil has expectorant [15], antioxidant [3, 11], and antimicrobial effects [17]. The oil of *Marrubium incanum* Desr. also exhibits antimicrobial properties [18]. Sometimes fake *Marrubium vulgare* L. raw material is marketed, with the addition of plant material from other plant species of the genus *Marrubium* sp., including *Marrubium incanum* Desr. [19].

The aim of this study was to compare the content as well as the qualitative and quantitative composition of the oil from the herb of two horehound species: *Marrubium vulgare* L. and *Marrubium incanum* Desr.

^{*} Corresponding author. E-mail: grazyna.zawislak@up.lublin.pl

MATERIALS AND METHODS

This study was conducted during the period 2008–2009.

Plant material

Herbal raw material (herb) came from a one-year plantation, located in an experimental section of the Department of Vegetable Crops and Medicinal Plants of the University of Life Sciences in Lublin (Poland) ($51^{\circ}14'N 22^{\circ}34'E$). Seeds of *Marrubium vulgare* L. and *Marrubium incanum* Desr. came from the Botanical Garden of the Maria Curie-Skłodowska University in Lublin. The plantation was established by planting seedlings produced in a greenhouse. Plants were planted at a spacing of 30×40 cm at the end of May. The herb was harvested at the flowering stage at the end of July. The plants were cut at a height of 5 cm above ground. The herb was dried in a drying oven at a temperature of $30 \,^\circ$ C.

Isolation of essential oil

Essential oils of *Marrubium vulgare* L. and *Marrubium incanum* Desr. were obtained through steam distillation using a Deryng apparatus, according to Polish Pharmacopoeia VII [20]. 40 g of dried herb and 400 ml of distilled water were used for distillation, and the distillation time was 3 hours.

GC-MS

A GC-MS instrument ITMS Varian 4000 GC-MS/MS (Varian, USA) was used, equipped with a CP-8410 auto-injector and a 30 m \times 0.25 mm i. d. VF-5ms column (Varian, USA), film thickness 0.25 µm; carrier gas: helium at a rate of 0.5 ml/min; injector and detector temperature 220 °C and 200 °C, respectively; split ratio 1 : 20; injection volume 1 µl. A temperature gradient was applied (60 °C for 0.5 min, then incremented by 3 °C/min to 246 °C and held at this temperature for 10 min); ionization energy 70 eV; mass range 40–1000 Da; scan time 0.80 s.

GC-FID

A Varian 3800 Series (Varian, USA) instrument with a DB-5 column (J & W, USA) was used, operated under the same conditions as GC-MS; FID 256 °C; split ratio 1 : 50.

The qualitative analysis was carried out on the basis of MS spectra which were compared with the spectra of the NIST library [21] and with data available in the literature [22]. The identity of the compounds was confirmed by their retention indices, taken from the literature [22].

RESULTS AND DISCUSSION

The two-year study showed that the essential oil content in the dried herb of *Marrubium vulgare* L. was on average 0.05%. A similar content of oil was found in the dried herb of *Marrubium incanum* Desr. (Table 1). The essential oil content in the herb *Marrubium vulgare* L. is in agreement with the reports of several authors [13, 16, 23]. In the study of other researchers, the oil content in the herb *Marrubium vulgare* L. was higher and it was 0.09% [7].

The present study showed the presence of 34 compounds in the oil of *Marrubium vulgare* L. and 20 compounds in the oil of *Marrubium incanum* Desr. (Tables 2 and 3). The presence of 30 compounds was found in the oil obtained from *Marrubium vulgare* L. growing in natural stands in Algeria [8]. There were 34 compounds in the oil from Iran [7], whereas the oil of *Marrubium vulgare* L. growing in Lithuania contained 47 compounds [3]. A few studies on the oil of *Marrubium incanum* Desr. show the presence of 47 compounds [18].

The main components of the oil of *Marrubium vulgare* L. were as follows: E-caryophyllene, germacrene D and δ -amorphene. The following constituents were predominant in the oil of *Marrubium incanum* Desr.: germacrene D, E-caryophyllene and α -cadinol (Tables 2 and 3).

The oil of *Marrubium vulgare* L. contained from 25.91 to 32.06% of E-caryophyllene, similarly to the oil of *Marrubium incanum* Desr. – 22.49–30.79% (Tables 2 and 3). The available literature does not indicate E-caryophyllene as the main component of the oil of *Marrubium vulgare* L. in Algeria [8], Iran [24] or Tunisia [11]. E-caryophyllene was the dominant compound in the oil of *Marrubium incanum* Desr., and its content was 27.0% [18].

In the present study, the content of germacrene D ranged from 20.23 to 31.14% in *Marrubium vulgare* L. and 32.46– 37.87% in the oil of *Marrubium incanum* Desr. (Tables 2 and 3). The literature gives a lower value of germacrene D content in the oil of *Marrubium incanum* Desr. (26.2%) [18]. A lower content of germacrene D, compared to this study, was also found in the oil of *Marrubium vulgare* L. from Iran (9.7%) [7] and Lithuania (4.71%) [3].

Germacrene D is one of the dominant components of the oils obtained from other plant species of the genus *Marrubium* sp.: *Marrubium cuneatum* Russell from Iran (24.1%) [6] and Lebanon (15.6%) [25], *Marrubium parviflorum* (21.5%) [7], *Marrubium bourgaei* ssp. *caricum* P. H. Davis (10.3%) [5], *Marrubium peregrinum* L. (6.79–9.05%) [10].

The content of δ -amorphene in the oil of *Marrubium* vulgare L. was 8.38–10.22%. The oil of *Marrubium incanum*

Table 1. Percentage of essential oil in the herb Marrubium sp.

Species	Essential oil content in dried herb, %			
	2008	2009	Mean	
Marrubium vulgare L.	0.06	0.05	0.05	
Marrubium incanum Desr.	0.05	0.03	0.04	

Tabl	e 2.	Percentage con	nposition o	f Marrul	bium vul	aare L.	essential	oil

Compound	RI	Percentage		
Compound		2008	2009	
Limonene	1 032	t	1.53 ± 0.06	
γ-Terpinene	1 060	t	1.75 ± 0.07	
Geijerene	1 1 4 3	t	t	
trans-Pinocamphone	1 167	t	t	
cis-Pinocamphone	1174	t	t	
Thymol	1 2 9 0	t	0.42 ± 0.59	
Carvacrol	1 298	1.16 ± 0.07	14.98 ± 0.07	
a-Cubebene	1 352	Т	0.28 ± 0.54	
α-Copaene	1 377	7.56 ± 0.09	6.95 ± 0.12	
β-Bourbonene	1 389	Т	2.18 ± 0.01	
β-Elemene	1 391	1.47 ± 0.01	1.37 ± 0.02	
β-Longipinene	1 401	t	t	
α-cis-Bergamotene	1413	t	t	
E-Caryophyllene	1419	32.06 ± 0.28	25.91 ± 0.61	
β-Copaene	1 4 3 2	t	t	
α-Guaiene	1 440	t	t	
(Z)-β-Farnesene	1 445	3.95 ± 0.04	1.10 ± 0.00	
a-Humulene	1 455	6.15 ± 0.06	4.84 ± 0.11	
γ-Muurolene	1 482	t	t	
Germacrene D	1 484	31.14 ± 0.16	20.23 ± 0.55	
Bicyclogermacrene	1 500	0.67 ± 0.11	0.30 ± 0.42	
β-Bisabolene	1 506	t	t	
δ-Amorphene	1512	10.22 ± 0.09	8.38 ± 0.14	
γ-Cadinene	1514	t	t	
β-Sesquiphellandrene	1 523	t	t	
trans-Cadina-1(2),4-diene	1 535	t	t	
α-Cadinene	1 539	t	t	
E-Nerolidol	1 563	3.04 ± 0.06	4.52 ± 0.13	
Germacrene D-4-ol	1 576	1.27 ± 0.02	t	
Caryophyllene oxide	1 583	0.35 ± 0.57	2.33 ± 0.10	
Humulene epoxide II	1 608	t	t	
1-epi-Cubenol	1 629	t	t	
epi-α-Muurolol	1 642	t	t	
α-Cadinol	1 654	0.80 ± 0.01	2.63 ± 0.50	
Total		99.84	99.7	
Monoterpene hydrocarbons		_	3.21	
Oxygenated monoterpenes		1.16	15.40	
Sesquiterpene hydrocarbons		93.22	71.54	
Oxygenated sesquiterpenes		5.46	9.48	

t - trace (<0.05%).

Desr. had a lower proportion of this constituent (3.05-3.76) (Tables 2 and 3).

This study showed that the oil of *Marrubium incanum* Desr. also contained α -cadinol as a dominant component (14.36–17.87%). This compound was also found in the oil of *Marrubium vulgare* L. in a much smaller proportion (0.80–2.63%) (Tables 2 and 3). The available literature does not indicate this compound as a dominant component in the oil of *Marrubium vulgare* L. and *Marrubium incanum* Desr. as well as in the oils of other plant species of the genus *Marrubium* sp. [2–11, 18].

The essential oil of *Marrubium vulgare* L. contained from 6.95 to 7.56% of α -copaene (Table 2). A twice lower

content of this compound was found in the oil of *Marrubium incanum* Desr. (2.65–2.97%) (Table 3). The content of this component was at a similar level in the oil of *Marrubium vulgare* L. from Lithuania (3.08%) [3] and Iran (3.4%) [7]. A lower content of α -copaene was shown in the oil from Algeria [8].

A higher content of α -humulene was found in the oil of *Marrubium vulgare* L. (4.84–6.15%) than in the oil of *Marrubium incanum* Desr. (3.05–4.57%) (Tables 2 and 3). The oil of *Marrubium vulgare* L. from Lithuania [3] and Algeria [8] contained a smaller amount of this compound.

Table 3. Percentag	e composition of <i>Marrubiu</i>	<i>m incanum</i> Desr. essential oil

Compound	RI	Perce	Percentage		
Compound		2008	2009		
Geijerene	1 1 4 3	0.55 ± 0.02	t		
Carvacrol	1 298	7.37 ± 0.05	t		
α-Ylangene	1 375	0.48 ± 0.00	t		
α-Copaene	1 377	2.97 ± 0.02	2.45 ± 1.11		
β-Bourbonene	1 389	0.52 ± 0.08	t		
β-Elemene	1 391	1.21 ± 0.04	t		
γ-Gurjunene	1 410	0.14 ± 0.34	t		
E-Caryophyllene	1 419	22.49 ± 0.16	30.79 ± 1.24		
β-Copaene	1 432	t	t		
α-Humulene	1 455	3.05 ± 0.06	4.57 ± 0.10		
γ-Muurolene	1 482	t	t		
Germacrene D	1 484	37.87 ± 0.07	32.46 ± 1.17		
Bicyclogermacrene	1 500	3.22 ± 0.15	4.89 ± 0.49		
Germacrene A	1 509	t	t		
δ-Amorphene	1512	3.05 ± 0.00	3.76 ± 0.40		
γ-Cadinene	1514	t	t		
Spathulenol	1 578	t	t		
Caryophyllene oxide	1 583	2.51 ± 0.18	3.01 ± 0.08		
epi-α-Muurolol	1642	t	t		
α-Cadinol	1654	14.36 ± 0.03	17.87 ± 0.27		
Total		99.79	99.80		
Monoterpene hydrocarbons		0.55	-		
Oxygenated monoterpenes		7.37	-		
Sesquiterpene hydrocarbons		75.00	78.92		
Oxygenated sesquiterpenes		16.87	20.88		

t - trace (<0.05%).

CONCLUSIONS

The herb *Marrubium vulgare* L. is collected only from plantations. *Marrubium incanum* Desr. is rarely cultivated in our country. The essential oil content in the dried herb of *Marrubium vulgare* L. was 0.05%. A similar content of oil was found in the dried herb of *Marrubium incanum* Desr. – 0.04%. The main components of the oil of *Marrubium vulgare* L. and *Marrubium incanum* Desr. were E-caryophyllene and germacrene D. Herbs *Marrubium vulgare* L. and *Marrubium incanum* Desr. were harvested at the flowering stage. According to Polish Pharmacopoeia VIII [26], the horehound herb should be harvested during flowering.

> Received 8 February 2012 Accepted 6 March 2012

References

- T. Wolski, D. Matosiuk, T. Baj, A. Ziewiec, *Post. Fitoter*, 1, 39 (2007).
- D. M. Lazari, H. D. Skaltsa, T. Constantinidis, *Flavour Fragr. J.*, 14, 290 (1999).
- K. G. C. Weel, P. R. Venskutonis, A. Pukalskas, D. Gruzdiene, J. P. H. Linssen, *Fett / Lipid*, **101**(10), 395 (1999).

- 4. Z. B. Nik, M. Mirza, J. Essent. Oil Res., 15, 342 (2003).
- B. Demirci, K. H. C. Baser, N. Kirimer, J. Essent. Oil Res., 16, 133 (2004).
- Z. B. Nik, M. Mirza, F. Shahmir, *Flavour Fragr. J.*, **19**, 233 (2004).
- M.Khanavi, L.Ghasemian, E.H.Motlagh, A.Hadjiakhoondi, A. Shafiee, *Flavour Fragr. J.*, 20, 324 (2005).
- 8. R. Belhattab, L. Larous, J. Essent. Oil Res., 18, 369 (2006).
- M. Kürkçüoglu, K. H. C. Başer, A. Tosun, E. Dogan, H. Duman, J. Essent. Oil Res., 19, 34 (2007).
- B. Kaurinovic, S. Vlaisavljevic, M. Popovic, D. Vastag, M. Djurendic-Brenesel, *Molecules*, 15, 5943 (2010).
- A. Kadri, Z. Zarai, A. Békir, N. Gharsallah, M. Damak, R. Gdoura, *Afr. J. Biotechnol.*, **10**(**19**), 3908 (2011).
- S. Kohlmünzer, *Farmakognozja*, Wydawnictwo Lekarskie PZWL, Warszawa, 308 (2007).
- P. R. Bradley, *British Herbal Compendium*, Vol. 1, British Herbal Medicine Association, 218 (1992).
- S. El Bardai, M. Wibo, M-Ch. Hamaide, B. Lyoussi, J. Quetin-Leclerq, N. Morel, *Br. J. Pharmacol.*, 140, 1211 (2003).
- B. E. Wyk, M. Wink, *Rośliny lecznicze świata*, MedPharm Polska, 198 (2008).
- 16. G. Zawiślak, Herba Pol., 55(3), 63 (2009).
- 17. R. C. Wren, Potter's New Cyclopaedia of Botanical Drugs and Preparations, 146 (1988).

- S. Petrović, M. Pavlović, Z. Maksimowić, et al., *Nat. Prod. Commun.*, 4(3), 431 (2009).
- 19. S. Mills, K. Bone, D. Phyto, *The Essential Guide to Herbal Safety*, Elsevier Churchill Livingstone, 620 (2005).
- 20. Polish Pharmacopoeia VII, PTFarm, Warszawa (2006).
- 21. NIST/EPA/NIH Mass Spectral Library, USA (2002).
- 22. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, Allured, Carol Stream, IL (2001).
- 23. Ch. Jänicke, J. Grünwald, T. Brendler, *Handbuch Phytothe-rapie*, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 22 (2003).
- 24. K. Morteza-Semnani, M. Saeedi, E. Babanezhad, *J. Essent. Oil Res.*, **20**(**6**), 488 (2008).
- A. Grassia, F. Senatore, N. A. Arnold, et al., *Pol. J. Chem.*, 80(4), 623 (2006).
- 26. Polish Pharmacopoeia VIII, PTFarm, Warszawa (2008).

Grażyna Zawiślak

LENKIJOJE AUGINAMŲ *MARRUBIUM VULGARE* L. IR *MARRUBIUM INCANUM* DESR. ETERINIŲ ALIEJŲ CHEMINĖ SUDĖTIS

Santrauka

Marrubium vulgare L. Lenkijoje auginamas medicininiams tikslams. *Marrubium incanum* Desr. auginamas Lenkijos botanikos soduose, augalų kolekcijose. Darbe buvo tiriama abiejų augalų eterinių aliejų cheminė sudėtis.