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Introduction. Dilated cardiomyopathy is considered as the most common cause of chronic 
heart failure syndrome.

Th e place of dilated cardiomyopathy in the classifi cation of cardiomyopathies. Th e 
complexity of dilated cardiomyopathy, as well as that of other cardiomyopathies, is well 
refl ected in the two proposed classifi cations of cardiomyopathies. Interestingly, these two 
classifi cations, one of them being prepared by the American Heart Association and the 
other by the European Heart Society, have some diff erences which are discussed in the 
article.

Etiology and pathogenesis of dilated cardiomyopathy. Recently, a lot of data have ap-
peared concerning the complicated pathogenesis of this condition. It is clear now that not 
only the sympathetic nervous system and the renin–angiotensin–aldosterone system are 
important for the progression of dilated cardiomyopathy to heart failure. Autoimmunity, 
genetic defects, metallomatrixproteinases, increased collagen depostition and degradation, 
beta2-adrenoreceptors and many other factors also seem to play a crucial role here. Th ey 
become the new targets of novel treatment methods and drugs that are under develop-
ment.

Conclusions. In this article, we briefl y outline the place of dilated cardiomyopathy in 
the new proposed classifi cations of cardiomyopathies and summarize the novelties of in-
vestigations in the fi eld of this condition.
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Th e World Health Organization (WHO) defi nes dilated car-
diomyopathy (DCM) as a condition in which the ventricular 
chambers exhibit increased diastolic and systolic volume and 
a low (<40%) ejection fraction (1, 2). Th e prevalence of DCM 
in the adult population in Western countries is 1–1.5% and 
as already mentioned, it is considered as the most common 
cause of chronic heart failure (HF) syndrome. Th e natural 
history of the condition is progressive. Despite improved 
treatment, the mortality rate for dilated cardiomyopathy re-
mains high, with a median period of survival of 1.7 years for 
men and 3.2 years for women (1). A minority of patients with 
recent-onset DCM improve spontaneously, even some sick 
enough initially to be considered for cardiac transplantation.

In this article, the place of DCM in the newly proposed 
classifi cations of cardiomyopathies, its etiology and novelties 
of HF pathogenesis due to DCM are reviewed.

THE PLACE OF DCM IN THE CLASSIFICATION 
OF CARDIOMYOPATHIES

Th e 1995 WHO / ISFC (International Society and Federation 
of Cardiology) classifi cation of cardiomyopathies was based 
mainly on the anatomic descriptions of cardiac chambers 
in systole and diastole, but the pathopysiologic background, 
natural history and response to treatment of these condi-
tions were not considered. Th erefore, recently the American 
Heart Association scientifi c group has prepared a new clas-
sifi cation (3) in which DCM and restrictive cardiomyopa-
thy are defi ned as mixed cardiomyopathies (predominately 
non-genetic). Hypertrophic cardiomyopathy, caused by 
mutations in contractile proteins, Ion channelopathies, ar-
rythmogenic right ventricular dysplasia (cardiomyopathy) 
and left  ventricular noncompaction, which also have genetic 
reasons, were defi ned as genetic cardiomyopathies. As ac-
quired cardiomyopathies the following were classifi ed: peri-
partum, tachycardia-induced, stress-provoked (Tako–Tsubo 
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syndrome) cardiomyopathies and myocarditis (Fig. 1). Car-
diomyopathies in which myocardial involvement is part of a 
large number and variety of generalized systemic disorders 
were considered as secondary.

However, recently the European Society of Cardiology 
working group has proposed another classifi cation of car-
diomyopathies (4). In their opinion, distinguishing primary 
and secondary cardiomyopathies is challenging, as many 
of the diseases classifi ed as primary cardiomyopathies can 
be associated with major extra-cardiac manifestations and 
conversely, pathology in many of the diseases classifi ed as 
secondary cardiomyopathies can predominantly or even ex-
clusively involve the heart. Th ey defi ne cardiomyopathy as a 
myocardial disorder in which the heart muscle is structurally 
and functionally abnormal, in the absence of coronary artery 
disease, hypertension, valvular disease and congenital heart 
disease suffi  cient to cause the observed myocardial abnor-
mality. In their classifi cation, cardiomyopathies are grouped 
into hypertrophic, dilated, restrictive, arrhythmogenic right 
ventricular and unclassifi ed phenotypes. Each of these phe-
notypes is then sublclassifi ed into familial and non-familial 
forms (Fig. 2). Familial cardiomyopathies refer to the occur-
rence in more than one family member of either the same 
disorder or a phenotype that is caused by the same genetic 
mutation. Monogenic cardiomyopathies occurring for the 
fi rst time in the family are then also classifi ed as familial, as 
they can be subsequently transmitted to the off spring. Non-
familial cardiomyopathies are clinically defi ned by the pres-
ence of a cardiomyopathy in the patient and the absence of 

it in other family members. Th ey are further subdivided into 
idiopathic and acquired cardiomyopathies.

It should be mentioned that in both of these classifi cations 
pathological myocardial processes and dysfunction that are 
a direct consequence of other cardiovascular abnormalities 
such as that which occur with valvular heart disease, systemic 
hypertension, congenital heart disease or atherosclerotic coro-
nary artery disease, are not considered as cardiomyopathies.

ETIOLOGY OF DILATED CARDIOMYOPATHY

Th e phenotype of dilated cardiomyopathy is very heteroge-
neous and not always consistent with DCM, and according 
to the novel classifi cations not even with cardiomyopthies. 
Heart chamber dilation can be caused or accelerated by the 
following processes and agents (5):

genetic reasons (autosomal dominant, autosomal re-• 
cessive, X-linked inheritance)
specifi c heart muscle diseases (myocardial ischemia, • 
valvular heart disease, chronic systemic hypertension)
metabolic diseases (nutritional defi ciencies, endocrine • 
disorders (e. g. diabetes mellitus, hypothyroidism, thy-
rotoxicosis, Cushing disease, pheochromocytoma), 
electrolyte disturbances (e. g. hypocalcemia, hypophos-
phatemia)
infections (viral, bacterial, rickettsial, mycobacterial, • 
fungal, spirochetal, parasitic)
toxins (e. g. alcohol, anthracyclines, antiretroviral • 
agents, cocaine, lithium, phenothiazines)

Fig. 1. Classifi cation of cardiomyopathies proposed by the American Heart Association: primary cardiomyopathies (adapted from Richardson P, McKenna W, 

Bristow M et al. Circulation Mar 1 1996; 93(5): 841–2). HCM – hypertrophic cardiomyopathy; LVCN – left ventricular non-compaction; ARVC / D – arrhyth-

mogenic right ventricular cardiomyopathy / dyspalsia; LQTS – long-QT syndrome; SQTS – short-QT syndrome; CPVT – catecholaminergic polymorphic 

ventricular tachycardia; DCM – dilated cardiomyopathy
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systemic, autoimmune diseases (e. g. systemic lupus • 
erythematosus, amyloidosis, sarcoidosis)
peripartum state• 
tachyarrythmias (supraventricular, ventricular, atrial • 
fl uter)
arrhythmogenic right ventricular dysplasia or cardio-• 
myopathy
neuromuscular dystrophies (e. g. X-linked cardioskel-• 
etal myopathy)
hematologic disorders (e. g. chronic anemia, as in sickle • 
cell disease or thalassemia)
idiopathic DCM.• 

Th e variety of possible etiologic factors shows how 
complicated the diff erential diagnosis of DCM might be. 
Idiopathic DCM can be considered only when aft er rigorous 
evaluation all other possible etiologic factors are excluded; 
and even then idiopathic DCM makes up more than a half of 
patients with DCM.

A lot of scientists work to elucidate the possible reasons 
for idiopathic DCM, most of them concentrating on genetic 
and autoimmune mechanisms. Transmitted genetic altera-
tions responsible for familial DCM have already been identi-
fi ed. However, none of the other revealed genetic or autoim-
mune system alterations can independently cause idiopathic 
DCM.

Genetics
Th ree main categories of genetic mechanisms are involved in 
the development of DCM: single gene defects, altered expres-
sion of normal genes, and polymorphic variations in modifi er 
genes. Familial dilated cardiomyopathies are associated with 
multiple single gene mutations, usually encoding cytoskeletal, 
nuclear membrane, or contractile proteins, including desmin, 

titin, and troponin T. Th e transmission is usually autosomal 
dominant, although autosomal recessive and X-linked inher-
itance are also known (6).

In all types of cardiomyopathies, when heart fail-
ure progresses, an altered expression of normal, so-called 
wild-type genes can be found. Th e examples are as follows: 
downregulation of beta1-adrenoreceptors, ATPase genes, 
upregulation of atrial natriuretic peptide (ANP), angiotensin 
converting enzyme (ACE), tumour necrosis factor alfa 
(TNFα), endothelin, etc. (7).

Th e last genetic mechanism, which could probably con-
tribute to the genesis of idiopathic DCM, is based on poly-
morphic variations (slightly diff erent size or number) of 
modifi er genes. Th ese are not so rare in population, and usu-
ally they do not cause any diff erences in function and are 
considered normal. Yet some of these polymorphisms can 
cause diff erences in the function of encoded proteins, which 
might be considered as a biological variation, but also might 
account for a higher susceptibility for disease or diff erent re-
sponse to treatment. Polymorphic variants of genes encod-
ing ACE, angiotensin AT1 receptors, beta1-adrenoreceptors, 
beta2-adrenoreceptors, alfa1-adrenoreceptors and endothe-
lin receptor type A are known to infl uence the natural his-
tory of cardiomyopathies, as well as their diff erent response 
to medications (6, 7).

Autoimmunity
Autoimmune features in DCM include a weak association 
with HLA-DR4 (XIII, 2) abnormal expression of HLA class 
II on cardiac endothelium (8, 9) and increased levels of cir-
culating cytokines and cardiac autoantibodies (8, 1–14). Re-
cently, a lot of studies have been performed concerning car-
diac autoantibodies in DCM. Th ese autoantibodies are not 

Fig. 2. Classifi cation of cardiomyopathies proposed by the European Society of Cardiology (adapted from Elliott P, Andersson B, Arbustini E et al.

Eur Heart J 2008; 29: 270–6). HCM – hypertrophic cardiomyopathy; DCM – dilated cardiomyopathy; ARVC – arrhythmogenic right ventricular cardio-

myopathy; RCM – restrictive cardiomyopathy
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necessarily pathogenic, but represent markers of immune-
mediated injury; they are found in patients and relatives 
at risk, but not in normal and disease control subjects, and 
react with autoantigens unique to heart (8, 15). Antibodies 
to sarcolemmal and myofi brillar antigens, to mitochondrial 
antigens, such as M7, adenosine nucleotide translocator and 
other respiratory chain enzymes have been found in DCM 
patients, but some of these were cross-reactive with skeletal 
muscles, or their specifi city to DCM has not been properly 
tested (8, 12–14). Particular interest has been recently shown 
to autoantibodies against beta1-adrenoreceptors, especially 
the ones that target the functionally important second ex-
tracellular loop. Th ey have been found to activate beta1-
adrenoreceptor signalling cascade in vitro (16–18), and 
in vivo they are associated with a poorer LV function (19), 
a higher prevalence of serious ventricular arrhythmias (20) 
and a higher incidence of sudden cardiac death (21). It is still 
unclear whether DCM develops because of these antibodies, 
or whether the antibodies develop as a result of cardiac tis-
sue injury (17).

However, neutralization of these circulating autoanti-
bodies is the principle of a novel treatment method called 
immunoadsorption it is usually targeted to autoantibodies 
against beta1-adrenoreceptors. Studies have been published 
showing acute hemodinamic improvement persisting for 
three months aft er immunoadsorption in patients with DCM 
(22, 23). Its benefi t on long-term outcomes is still unclear, as 
some studies already aft er six months have seen no signifi -
cant diff erences of hemodinamic parameters between the pa-
tients treated with immunoadsorption and not (23), whereas 
in one study reduced rates of hospitalization for heart failure 
three years aft er immunoadsorbtion have been documented 
(24). However, quite recently data have been published that 
in patients with DCM, immunoadsorption with subsequent 
immunoglobulin substitution modulates myocardial gene 
expression of desmin which is known to be upregulated in 
HF (25). Th us, this treatment method, and especially its cost 
eff ectiveness, still remain controversial.

PATHOGENESIS OF HEART FAILURE DUE TO 
DILATED CARDIOMYO PATHY

Neuroendocrine system
Th e progression of HF is consistent in patients with diff erent 
etiologies, as it is ultimately driven by very similar biologi-
cally active molecules, regardless of the inciting cause (26). 
Compensatory mechanisms that are activated aft er the ini-
tial decline in the pumping capacity of the heart are able to 
modulate LV function within the physiologic range. Th ere-
fore the functional capacity of the patient at the beginning is 
preserved or depressed only minimally.

Th e early activation of the sympathetic nervous system 
(SNS) and salt-water retaining renin-angiotensin-aldosterone 
system (RAAS) preserve cardiac output by increasing heart 
rate and contractility and expanding the plasma volume. In 

order to reduce wall stress hypertrophy develops. To coun-
teract the excessive vasoconstriction resulting from excessive 
activation of SNS and RAAS, the family of vasodilatory mol-
ecules, including natriuretic peptides, prostaglandins (PGE2, 
PGEI2) and nitric oxide, is activated (26–28). Yet for a longer 
time all these compensatory mechanisms show adverse af-
fects, such as altered gene expression, resulting in changes 
in cardiac myocytes, growth and remodelling and apopto-
sis. Angiotensin II through collagen deposition is thought to 
enhance myocardial fi brosis. Excessive adrenergic stimula-
tion has a toxic eff ect on the myocytes and results in their 
necrosis. It has been documented, that in transgenic mice 
overexpression of beta1-adrenoreceptors causes myocyte 
hypertrophy, followed by fi brosis and heart failure, whereas 
overexpression of beta2-adrenoreceptors was generally bet-
ter tolerated or even benefi cial, although it also remains con-
troversial (29–34).

Changes at the myocyte level
Altered expression of genes causes defects of their encoded 
proteins or regulatory mechanisms and further enhances 
myocardial contractile dysfunction. Th ese phenomena may 
be divided into two groups: changes in intrinsic and in mod-
ulated heart function. Th e intrinsic heart function means 
the contraction and relaxation of the myocardium in the 
resting state, which is not infl uenced by hormonal or neu-
ral factors. Modulated heart function might be stimulated or 
inhibited by extrinsic factors (neurotransmitters, cytokines, 
autocrine / paracrine substances and hormones). It is very im-
portant for the response to the changed physiologic conditions 
or physical stimuli (28).

Th e changes in intrinsic function in the failing heart 
comprise an altered length-tension relation, a blunted force-
frequency response and signals responsible for the abnormal 
cellular and chamber remodelling (28). Side-to-side slippage 
of myocytes within the wall and their lengthening relatively 
to their transverse diameter further enhance mural thinning 
and cavitary dilation, thereby the wall stress, which is one of 
the determinants of myocardial oxygen consumption, also in-
creases (28, 35–37). Moreover, myocyte energy production is 
inadequate due to defi ciencies in subcellular ion fl ux mecha-
nisms or the myosin ATPase cycle (28, 38). All this places the 
heart at energetic disadvantage and further contributes to 
contractile dysfunction.

Most of the changes in the modulated heart function oc-
cur in beta-adrenergic signal transduction (39). Four types 
of beta-adrenoreceptors have been identifi ed: beta-1, beta-2, 
beta-3 and beta-4. Th e fi rst two, and especially beta-1, are rec-
ognised as important in HF pathogenesis. Despite many sim-
ilarities, these two receptors have distinct genetic and phar-
macological characteristics. Beta1-adrenoreceptors stimulate 
c-AMP production by interacting exclusively with G stimu-
latory proteins, whereas beat2-aderenoreceptors can couple 
with both stimulatory and inhibitory G proteins. Further-
more, beta1-adrenoreceptor-mediated responses are mainly 
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related to c-AMP production, whereas beta2-adrenoreceptor-
mediated signalling is more complex and not entirely de-
fi ned. Numerous studies have shown downregulation of be-
ta1-adrenoreceptors in failing heart with the desensitization 
of the remaining receptors (29, 40, 41). Th is, together with 
the changes in G stimulatory proteins and c-AMP, aff ects the 
ability of beta-adrenergic stimulation to increase heart rate 
and contractility and thereby infl uences myocardial reserve 
and exercise responses. Although beta2-adrenoreceptor levels 
are reported to remain unchanged in HF, there are data that 
stimulation of these receptors is arrhythmogenic, mediated 
by sarcoplasmic reticulum (SR) Ca overload-induced sponta-
neous SR Ca release and aft ercontractions (32). Moreover, it 
has been suggested that patients with HF with the Th r164Ile 
polymorphism of beta2-adrenoreceptors have a lower exer-
cise capacity (33) and may have a higher mortality or pro-
gression to transplantation (34).

Nevertheless, the inhibition of modulated heart function 
is also abnormal in heart failure as a result of the reduced 
parasympathetic drive (7, 28).

Changes at the myocardium level
At the myocardial level, fi rstly the myocyte loss contributes 
to pump dysfunction in heart failure. Myocyte loss can oc-
cur via toxic mechanisms, producing necrosis, or by pro-
grammed cell death, producing apoptosis (7). Th ere is ex-
perimental evidence that myonecrosis might be triggered 
by elevated levels of circulating or tissue norepinephrine, or 
by excessive stimulation with angiotensin II or endothelin 
(42, 43). Moreover, heart failure is characterized by a 232-
fold increase in apoptotic myocyte death in spite of the en-
hanced expression of the anti-apoptotic gene product Bcl-2 
in the cells (35). It has been proved in in vitro and in vivo 
models that apoptosis can be triggered by multiple factors 
taking part in the pathogenesis of heart failure, such as 
myocardial stretch, norepinephrine, TNFα, oxidative stress, 
angiotensin II. Yet all the currently available assessments of 
myocyte apoptosis in failing hearts have been performed 
on explanted hearts from heart transplantation recipients, 
many of whom were receiving inotropic support. As cate-
cholamines are also known to provoke apoptosis, it remains 
unclear whether apoptosis occurs only in end-stage HF or 
whether it contributes to progression of cardiac remodelling 
and systolic dysfunction (26).

Increased collagen deposition has been reported in the 
end-stage idiopathic DCM (44, 45). Aft er myocyte death, the 
deposition of fi brillar collagen takes place in the extracel-
lular matrix. Th is “replacement fi brosis” as well as perivas-
cular fi brosis around the intramyocardial blood vessels can 
be triggered by angiotensin II, endothelin and aldosterone 
(6, 7), and it is thought to contribute to increased ventricular 
stiff ness which reduces myocardial compliance and further 
impairs its function (44). Alterations of myocardial colla-
gen fi ber orientation have also been reported in progressing 
DCM, which might be even more important for myocardial 

mechanics than the absolute amount of myocardial collagen 
(46). Gradual replacement of type III collagen with more ten-
sile type I collagen, occurring in progressing HF (47), is also 
thought to contribute to cavitary dilation. Moreover, recently 
data have been published that the extent of myocardial fi -
brosis detected by late gadolinium enhancement by cardiac 
Magnetic Resonance Imaging predicts adverse outcomes in 
non-ischemic cardiomyopathy (48, 49).

However, despite an increased collagen deposition, in-
creased plasma levels of collagen degradation products have 
been reported in patients with HF secondary to DCM (50). 
It appears that within the failing myocardium the activ-
ity of collagenolytic enzymes, known as metalloproteinases 
(MMPs), increases. Th e MMPs are the family of zinc-depend-
ent enzymes, each capable of degrading several extracellular 
matrix (ECM) and non-ECM substrates. Th ey are involved 
in normal tissue remodelling events, as well as in pathologi-
cal conditions (tumour metastases, arthritis, infl ammation, 
cardiovascular disease). From 25 diff erent MMPs, six are ex-
pressed in heart and are responsible for the majority of physi-
ological ECM degradations. Th eir role in the progression of 
cardiac disease and heart failure is now being intensively 
investigated. For example, cardiac-specifi c overexpression 
of MMP-1 and MMP-9 leads to a progressive degradation 
of the ECM, which accounts for the LV wall thinning, dilation 
and HF. Th eir impact on LV remodelling is also illustrated by 
the fact that in Framingham Heart substudy increased plasma 
MMP-9 levels were associated with LV dilation (51). Oxidative 
stress, TNF and other cytokines and peptide growth factors that 
are expressed in the failing myocardium are capable of activating 
MMPs (26, 44). Besides, the levels of endogenous tissue inhibi-
tors of metaloproteinases (TIMPs) are shown to be decreased in 
progressing HF (52).

Drugs inhibiting MMPs have been developed. Firstly, they 
were targeted for indications such as cancer and rheumato-
logic disorders, and later animal studies on their impact on 
LV remodelling emerged. Unselective MMP inhibitors were 
successfully used in animal models for LV remodelling; later, 
selective MMP inhibitors were developed, which advanced 
from animal to clinical studies. Yet, although in animal mod-
els of LV remodelling they were successful, no benefi t was 
seen in clinical studies conducted (53, 54).

Changes in left  ventricular geometry and architecture
Th ere are two diff erent opinions about the role of LV remod-
elling. Some investigators view it as the end-organ response 
to long-lasting neurohormonal stimulation and to changes 
occurring at the myocardial level; others suggest that LV 
remodelling might contribute independently to the progres-
sion of heart failure and fi rst of all by the increase in LV wall 
stress (55, 56).

Th e increase in LV end-diastolic wall stress occurs as a 
result of the increase in LV size and change in its geometry 
from ellipsical to a more spherical shape. Given that the load 
of the ventricle at end-diastole contributes to the aft erload 
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that the ventricle faces at the onset of systole, it follows that 
LV dilation itself increases the work and also oxygen utiliza-
tion. Th is increase in aft erload, created by LV dilation together 
with LV wall thinning occurring during the remodelling, con-
tributes to a decrease in cardiac output (26, 57). Th e high end-
diastolic wall stress might lead to episodic hypoperfusion of the 
subendocardium, with a resultant worsening of LV function 
(26, 58) and increased oxidative stress, with a resultant activa-
tion of genes sensitive to free radical generation (e. g. TNFα and 
interleukin-1beta).

Moreover, in the dilated spherical ventricle, the papillary 
muscles are pulled apart, which results in incompetence of 
the mitral valve and the development of “functional mitral 
regurgitation” (59). First of all, this causes the loss of forward 
blood fl ow, and secondly the regurgitant fl ow further over-
loads the ventricle.

Th e complex changes occurring at the myocyte, myo-
cardial and ventricular levels, such as myocyte loss, their 
stretching and slippage, excessive fi brosis and extracellular 
matrix degradation, might result in the loss of normal fi ber 
arrangement in the myocardium, and the latter is signifi -
cant for the complex adaptations related to optimal energy 
transfer from the myocardium to the blood in the normal 
heart (60). Abnormal fi ber orientation can contribute to 
the loss of synchronicity and homogeneity of systolic func-
tion. Studies have been published, demonstrating that in 
idiopathic DCM the LV wall motion is not always diff usely 
hypokinetic and that regional heterogeneity of left  ven-
tricular function is frequently present (61–68); moreover 
patients with HF have a more pronounced intraventricular 
dyssynchrony than normal subjects (62, 67, 69), which is 
an independent long-term predictor of cardiac events (64) 
and which can be diminished by beta-blocker therapy (69) 
or cardiac resynchronization therapy. Th e new echocardio-
graphic modalities, such as tissue Doppler imaging or two-
dimensional strain imaging, as well as magnetic resonance 
tomography allow an exact evaluation of ventricular syn-
chronicity.

It seems that when the deleterious changes in cardiac 
function and remodelling are advanced enough, they become 
self-sustaining and are capable of driving disease progression 
independently of the neurohormonal status of the patient.

CONCLUSIONS

Although the heterogeneity of possible DCM etiologic factors 
and the complexity of HF due to DCM pathogenesis might 
seem confusing, its understanding is important. It enables a 
better interpretation of diagnostic methods, a more reason-
able usage of HF drugs, and gives directions for further in-
vestigations, for developing novel therapeutic methods and 
drugs.
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DILATACINĖS KARDIOMIOPATIJOS NULEMTO 
ŠIRDIES NEPAKANKAMUMO PATOGENEZĖ 

S a n t r a u k a
Įvadas. Šiame straipsnyje pristatoma dilatacines kardiomiopatijos 
vieta naujosiose kardiomiopatijų klasifi kacijose, aptariamos šios 
būklės patogenezės naujovės.

Dilatacinės kardiomiopatijos vieta naujosiose kardiomiopa-
tijų klasifi kacijose. Dilatacinės kardiomiopatijos ir visų kitų kar-
diomiopatijų įvairiapusiškumas atsispindi dviejose neseniai pasiū-
lytose kardiomiopatijų klasifi kacijose. Šių klasifi kacijų, kurių vieną 
parengė Amerikos širdies asociacija, o kitą – Europos kardiologų 
draugija, skirtumai ir aptariami straipsnyje.

Dilatacinės kardiomiopatijos etiologija ir patogenezė. Pasta-
ruoju metu pasirodė daug naujos informacijos apie sudėtingą šios 
būklės patogenezę. Šiuo metu jau pritariama, kad, dilatacinei kar-
diomiopatijai progresuojant į širdies nepakankamumą, svarbi yra ne 
tik simpatinė nervų sistema ir beta1-adrenoreceptoriai, bet ir reni-
nio-angiotenzino-aldosterono sistema. Čia svarbų vaidmenį atlieka 
ir autoimunitetas, genetiniai defektai, metalomatrikso proteinazės, 
suintensyvėjęs kolageno kaupimasis bei jo degradacija, beta2-adreno-
receptoriai ir daug kitų veiksnių. Būtent jie ir tampa taikiniais naujų 
gydymo būdų bei vaistų, kurie šiuo metu yra intensyviai kuriami.

Išvada. Dilatacinė kardiomiopatija yra laikoma dažniausia lėti-
nio širdies nepakankamumo priežastimi.

Raktažodžiai: dilatacinė kardiomiopatija, širdies nepakanka-
mumas
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