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Recent experimental data on an anomalous diffusion of phospholipids in compartmentalized 
cell membrane are analysed. A new mathematical model of passive transport with the time-de-
pendent diffusion coefficient is proposed. The model with the step-type asymptotical depend-
ence of the diffusion coefficient is applied to a concrete example, and a correspondence between 
the experimental and theoretical results is shown. The random distribution of immobilized ob-
structions as well as the membrane skeleton meshwork offer a theoretical basis for modifying 
the available models of transport and thus for refining the diffusion model. The experimentally 
obtained time-dependend coefficient of diffusion is shown to agree with the proposed theoreti-
cal model.
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INTRODUCTION

Many cellular processes, such as signaling, involve the interac-
tion of several individual molecules that must come together to 
transmit information across the plasma membrane to the cell 
interior.

Recently, membrane molecules have been shown to undergo 
anomalous subdiffusion (see [1–4] and ref. therein). Unlike the 
simple Brownian diffusion, which is isotropic and homogene-
ous, anomalous diffusion may be anisotropic on some time-
scales. In the case of anomalous subdiffusion, the timescale of 
the measurement becomes intimately and nontrivially related to 
the observed motion. 

Anomalous subdiffusion most likely is a result of two main 
mechanisms that act on the molecules of the membrane simul-
taneously. The first has been shown by M. J. Saxton [5]: a random 
distribution of immobilized obstructions is sufficient to produce 
anomalous subdiffusion at scales shorter than the length charac-
teristic of the average cluster size of obstacles.

The second mechanism relates with temporary confinement 
of the diffusing protein. Also, experimental evidence, from both 
single particle tracking [6, 7] and optical-tweezers-based molec-
ular dragging studies [8, 9], implies that the cytoplasmic portion 
of transmembrane proteins nonspecifically collides with the 
membrane skeleton, causing temporary confinement of the dif-
fusing protein in compartments formed by the membrane skele-
ton meshwork. This results in so-called hop diffusion where free 
diffusion occurs inside compartments with infrequent intercom-
partmental transitions. At timescales intermediate to the tracer 

sensing the compartment boundaries and the average residency 
time in a compartment, anomalous diffusion is observed. 

In this paper, the experimental data on hop diffusion are an-
alysed employing the mathematical time-dependent diffusion 
coefficient model, and the correspondence between the experi-
mental and theoretical results is discussed.

EXPERIMENTAL DATA

Cell culture. PtK2 kangaroo rat kidney cells were grown in 
Eagle’s Minimum Essential Medium supplemented with 10% 
fetal bovine serum. Cells were plated on 18 × 18 mm coverslips 
(for high-speed video imaging) or 12-mm diameter glass-based 
dishes (for single fluorescent-molecule video imaging) obtained 
from Matsunami (Kishiwada, Japan) and Iwaki (Funabashi, 
Japan), respectively, and used 2–3 days later.

Gold probe preparation and fluorescent probe labeling. 
Colloidal gold particles 40-nm in diameter (BB International, 
Cardiff, UK) were conjugated with bovine holo transferrin (Wako, 
Osaka, Japan). The amount of transferrin mixed with the gold 
particles was varied to minimize the effect of crosslinking by the 
gold probe [3]. For single fluorescent-molecule video imaging, 
transferrin was labeled with Alexa555-succinimide (Molecular 
Probes, Eugene, OR). Before observation, cells were incubated in 
a transferrin-free medium for 15 min at 37 °C, washed, and then 
a gold probe or fluorescent probe was applied at 37 °C. 

Total internal reflection fluorescence microscopy. Single fluo-
rescent-molecule video imaging was performed on a home-
built objective-lens-type total internal fluorescence microscope 
using a 1.45 NA TIRF objective (Olympus, Tokyo, Japan) [3, 10]. 
Imaging was performed through an image intensifier (Model 
# C8600-03, Hamamatsu Photonics, Hamamatsu City, Japan) 
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coupled to a EB-CCD camera (Model # C7190-23, Hamamatsu 
Photonics). Camera output was stored on DV tape (Model # 
DSR-20, Sony, Tokyo, Japan) for post-experiment tracking.

High-speed video microscopy. High-speed video microscopy 
was carried out as described previously [3, 6]. The precision of 
the position determination was estimated from the standard de-
viation of the coordinates of 40-nm diameter gold particles at-
tached to a poly-L-lysine-coated coverslip, further covered with 
a 10% polyacrylamide gel, and was 17 nm and 6.9 nm at time-
resolutions of 25 µs and 2 ms, respectively. On the same instru-
mental setup, Murase et al. [2] found the precision to be 13 nm 
at a time-resolution of 25 µs for gold-labeled fluorescein-DOPE 
incorporated in large, unilamellar vesicles in the gel phase at 
25 °C. This result is comparable to that for gold particles attached 
on the coverslip. Thus, the limiting factor in the position deter-
mination in these experiments using immobilized gold particles 
at the varying exposure times is most likely the signal/noise ra-

tio in the image of the particle. The positional resolution begets a 
limit on the smallest diffusion coefficient that may be measured. 
At a time-resolution of 25 µs, the smallest measurable diffusion 
coefficient was found to be 0.021 µm2/s (Murase et al., [2]).

Total internal reflection fluorescence microscopy. Single fluo-
rescent-molecule video imaging was performed on a home-
built objective-lens-type total internal fluorescence microscope 
using a 1.45 NA TIRF objective (Olympus, Tokyo, Japan) [3, 10]. 
Imaging was performed through an image intensifier (Model 
# C8600-03, Hamamatsu Photonics, Hamamatsu City, Japan) 
coupled to a EB-CCD camera (Model # C7190-23, Hamamatsu 
Photonics). Camera output was stored on DV tape (Model # 
DSR-20, Sony, Tokyo, Japan) for post-experiment tracking.

The experimental plot of the mean squared displacement 
(MSD) of granules as a function of time in various time scales 
and the time-dependence of the diffusion coefficient D is shown 
in Fig. 1 [1].

Fig. 1. (A) Mean squared displacements (MSDs) for single trajectories of hop diffusion (those shown in Fig. 5) observed at frame times of 25 
ms (left) and 33 ms (right). (B) Apparent microscopic diffusion coefficient D

2–4
 plotted against the frame time (at least 100 simulations for each 

frame time). The set diffusion coefficient in the simulation was 9 mm2/s. (C) The plot of log(MSD / time) against log(time), covering six orders of 
magnitude in time

THE MATHEMATICAL MODEL OF DIFFUSION

The classical rule of diffusion says that the concentration distri-
bution w(x, t) obeys the classical equation of diffusion,

Wt = Dwxx, (1)

in which the coefficient of diffusion is independent of time and 
coordinate: D = const;

 
The fundamental solution of the diffusion equation is 
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where Q is the total quantity of matter. The Q value is also con-
stant (Q = const), because

 (3)

Experimental studies [1] show that the coefficient of diffu-
sion D is not a constant value and depends on the time momen-
tum t: D = D(t). This means that, instead of the classical equation 
of diffusion (1), we should deal with the equation

wt = D(t) wxx (4)

whose properties certainly differ from those of the classical 
equation of diffusion.

The equation of diffusion with the time-dependent coef-
ficient of diffusion D may be solved analytically. Since the co-
efficient of diffusion depends only on the time variable t and 
does not depend on the spatial variable, the dependence of the 
solution of equation (4) on the spatial coordinate x, as compared 
with the solution of the classical equation of diffusion (2), should 
remain the same. In the solution of equation (4), as compared 
with the solution of equation (2), only the time dependence may 
change. With this in mind, we shall look for equation (4) solu-
tion in the following form:

w(x, t) = Qeϕ(t)x2+ψ(t), (5)

where the functions ϕ(t) and ψ(t) are only time-dependent. 
Substitution of expression (5) into equation (4) gives us two 
equations:

ϕt = 4Dϕ2,  ψt = 2Dϕ, D = D(t). (6)

Both equations may be solved analytically:

                

 (7)

where A and B are the integration constants whose values are 
determined with regard to the initial conditions. Note here that 
D(t) > 0 and ∫ D(t)dt > 0. This means that for some t = t0, ϕ(t)  
has a singularity. 

The simplest way to determine the values of constants A 
and B is to use the asymptotic expression of solution (5) for 
D = const: 

              
 (8)

Substitution of ϕ(t) and ψ(t) according to expressions (7) 
into solution (5) should furnish the solution (2) of the classical 
equation of diffusion. This means that the coefficients A and B 
turn into 

A = 4Dt0,  B = ln Q, t > t0, (9)

i. e. constant A depends on the initial moment of time, and con-
stant B is the normalization constant depending on the total 
quantity of matter Q.

Thus, we have found that the equation of diffusion, with the 
time-dependent coefficient of diffusion D(t) (4), has the analyti-
cal solution (5) with functions ϕ(t) and ψ(t) according to ex-
pression (7).

THE PHENOMENOLOGICAL COEFFICIENT OF 
DIFFUSION

As we see, a concrete solution (5) with the functions (7) of the 
equation of diffusion (4) depends on the form of the coefficient 
of diffusion D(t).

The dependence of the coefficient of diffusion revealed in ex-
periments with molecules that undergo non-Brownian diffusion 
in the plasma membrane [1] is presented in Fig. 1. We shall ap-
proximate this step-type dependence by the following function:

 (10)

where a, b, c and h are the parameters that determine the form of 
dependence D(t) (see Fig. 2). 

Substitution of the expression D(t) (10) of the coefficient of 
diffusion into the formulas of the general solution (7) gives 

, 
(11)

.

These expressions should be substituted into the form (5) of the 
general solution to obtain the solution of equation (4).

Parameters A and B are determined by the values of the 
asymptotic solution. Considering that

 (12)

we obtain that if 

Fig. 2. The step-type time-dependence of the diffusion coefficient D(t); a determines 
the height of the “step”, b modifies the choice of the initial moment (b = at

0
), while 

c and h define the asymptotic values; D
±

 are the values of the asymptotic coef-
ficient:    ; 2h is the difference among the asymptotic values: 

 (“step” height);   is the effective width of the step. The a, b, c and 
h values are determined experimentally
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  (13)

then

 (14)
 

 (15)

From expression (15), if integral (3) is used, it follows that

, (16)

where Q is the total constant quantity of matter.

CONCLUSIONS AND DISCUSSION

We have to stress here that the experimentally determined pa-
rameters characterizing hop diffusion are severely affected by 
time-averaging over the frame time, the number of observa-
tions made during the residency period within a compartment, 

and the total observation time which, if inappropriately chosen, 
may lead to an erroneous conclusion that the diffusion is simple 
Brownian. 

Note that both x- and y-axes are expanded 1000-fold in Fig. 1 
on the right (for 33 ms). At a frame time of 33 ms (right), the plot 
can be fitted with a linear line showing a simple Brownian char-
acter. However, at a frame time of 25 ms, typical hop diffusion 
characteristics are apparent: a fast rise in the short-time regime 
and a slower linear growth of MSD with time in the long-time 
regime, with a slope comparable to that found in the 33-ms 
MSD-t plot.

At short frame times, the diffusion coefficient within a 
compartment can be detected with reasonable levels of fidelity. 
It is clear that at shorter frame times, the diffusion coefficient 
dominates within a compartment. At much longer frame times, 
the apparent diffusion coefficient levels off. In this time regime, 
the diffusion coefficient within a compartment (set at 9 mm2/s) 
becomes negligible, and the apparent diffusion coefficient is de-
termined by the hop diffusion between the compartments, i.e. 
the compartment size and the residency time within a compart-
ment. 

Note that the time here is not frame time, but the actual time 
interval of the observation of simulated particles. The individual 
solid curves are those obtained for each frame time. The vertical 
broken lines show the time taken to first sense the barriers (at 
0.1 ms) and the median residency time within a compartment 
(at 23 ms). Very clear anomalous diffusion (the best fit for the a-
value 0.23, i. e. a slope of 0.77) is observed inbetween these lines, 
whereas simple Brownian diffusion is observed at time-windows 
below and above these crossover timescales.

From expressions (14)–(16) we obtain that for t →  the so-
lution w(x, t) of the corresponding diffusion equation (4) turns 
into the classical diffusion with the constant diffusion coefficient 
D , and all differences appear at the initial stage of diffusion 
where the difference between the classical and time-dependent 
coefficients of diffusion is largest. 

As follows from the general form of solution (5) with func-
tions –ϕ(t) and –ψ(t) (7), the analogs of the normalization of 
integral and the MSD are 

 
(17)

From these expressions it follows that the asymptotic behav-
iour of the MSD ~ (2ϕ(t))–1 = [A-4∫ D(t)dt]/2, which coincides 
with the MSD from Fig. 1A. 

An additional result, which follows from the proposed mod-
el, is a new form of the normalizable functions: 

 and (18)

 (19)

Thus, the diffusion model with the time-dependent coef-
ficient of diffusion describes an anomalous diffusion of phos-

Fig. 3. Dependence of the function ϕ(t) according to the expression (11) for the diffu-
sion coefficient D(t) = arctg(10–t) + 2 

Fig. 4. Dependence of the function ψ(t) according to the expression (11) for the dif-
fusion coefficient D(t) = arctg(10–t) + 2
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pholipids in the compartmentalized cell membrane. The mac-
roscopic size of the diffusing molecules, on the one hand, and 
the inhomogeneous character of the cell medium on the other 
serve as a theoretical basis for modifying the available models 
of transport. In author’s opinion, these two important circum-
stances provide a sufficient reason for refining Fick’s law:

j = –D(t)cx; ct = jx. (20)

In this approach, as a consequence, also the mathemati-
cal model of the diffusion process (see, e. g., [11, 12]) should be 
changed correspondingly:

ct = D(t)cxx . (21)

Note here that dependence D = D(x) or D = D(x, t) does not 
obey equation (20). In other words, equation 

ct = D(x, t)cxx

does not describe any diffusion, contrary to the, unfortunately, 
very popular error.

The proposed model of diffusion essentially differs from 
other models of this kind, among them most popular being:

a) classical diffusion: ct = Dcxx, |cx|<<1, D = const (x, t) (13)

b) nonlinear diffusion: ct = [D(c)cx]x, limD(c) = const (14);
                   

x→x0

c) nonlocal diffusion: ct = Dcx
(1 + α), j = – Dcx

(α), where cx
(α) is the 

fractional derivative of the order α [11, 12].
The proposed model differs from them not only by the be-

haviour of the corresponding solutions, but also by the depend-
ence of the MSD in respect of time. This value, as a rule, may 
be observed experimentally and its behaviour may be a decisive 
factor while choosing one or another model of diffusion. 
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Paulius Miškinis

ANOMALI FOSFOLIPIDŲ SUBDIFUZIJA 
SEKCIONUOTOJE LĄSTELĖS MEMRANOJE IR 
MATEMATINIS DIFUZIJOS MODELIS SU NUO LAIKO 
PRIKLAUSANČIU DIFUZIJOS KOEFICIENTU

S a n t r a u k a  
Eksperimento metu, analizuojant fosfolipidų difuziją sekcionuotoje 
ląstelės membranoje, pastebėtas nuokrypis nuo klasikinės difuzijos. 
Pasiūlytas naujas matematinis modelis su nuo laiko priklausančiu 
difuzijos koeficientu. Nagrinėjamas konkretus šio modelio taikymas 
su laiptelio tipo asimptotine difuzijos koeficiento priklausomybe 
bei aptartas jo ir eksperimentinių rezultatų atitikimas. Atsitiktinis 
nejudančių sklaidos centrų pasiskirstymas ląstelėje, taip pat membranos 
skeletono tinklelis gali sudaryti teorinę prielaida modifikuoti atitinkamą 
transporto modelį ir atitinkamą difuzijos lygtį. Rezultatai rodo, kad 
eksperimento metu gauta difuzijos koeficiento priklausomybė nuo 
laiko derinasi su straipsnyje pasiūlytu teoriniu modeliu.


