
geologija. 2011.  Vol. 53.  No. 1(73). P.  21–26
© lietuvos mokslų akademija, 2011

Mathematical modelling of mountain height distribution 
on the Earth’s surface

Introduction

It has been known long since that a small piece of rock by its 
form is very similar to the mountain from which it originates. 
For instance, Edward Whymper in his “Scrambles amongst 
the Alps” writes: “It is worthy of remark that …  fragments 
of rock … often present the characteristic forms of the cliffs 
from which they have been broken”.

However, to what extent this similarity can be characterized 
quantitatively? This can be studied by using the mathematical 
fractal introduced by Benoit Mandelbrot and characterized 
by two basic properties  –  self-similarity and fractal dimen-
sion (Mandelbrot, 1983). Summarizing L. F. Richardson’s work 
(Ashford, 1993), B. Mandelbrot showed that the coastal line of 
Great Britain and some other seashore lines may be modelled 
by fractal curves. B. Mandelbrot owns the idea that the whole 
Earth’s surface may be modelled by fractal multitudes. Indeed, 
fractal surfaces drawn by computer (Mandelbrot, 1983) bear a 
strong resemblance to mountain-masses.

The further applications of fractals in this area are related 
to fractal investigations of geological media (Ivaniuk, 1997), 
auto-modelling of geodynamic processes (Sadovskij, 1986), 
application of fractal structures in seismic studies (Barriere, 
Turcotte, 1997).

The paper presents a natural approach instead of math-
ematical one. Let us analyze the list of the Earth-highest 
mountains and determine how much it may be related to 
fractal geometry.

The scheme of the paper is as follows. First of all, we com-
pile and verify a list of the 548 highest mountains of the con-
tinents, i.  e. those higher than 3 500  m. The next two parts 
deal with  (1) the mathematical function that approximates 
the heights of mountains and (2)  analyses the deviation of 
the observed heights from the theoretical heights. Then we 
select the number of mountains with the height no less than 
h. In the fifth part, the term of the distribution density of 
mountains (orosity) (from the Greek oros – mountain) is in-
troduced, and in the sixth the possible maximum height of a 
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mountain is assessed. The seventh part presents a compari-
son of exponential and power approximations.

Materials and methods

Approximation
As a source of information, a list compiled by P.  Scaruffi 
(Scaruffi, 2008) was used. It comprises 548 mountains higher 
than 3 500 m.

In the list, the distribution of the mountains (Fig. 1a) is 
not very regular. Its only regular feature is the decrease of the 
height hn in the sequence of mountains.

Let us take, instead of sequence hn, the sequence 
ln (h1 / hn), (h1 = 8 848) and represent it in a double logarith-
mic scale (Fig. 1b).

This dependence looks more regular. Mountain height 
logarithms are well approximated by the linear function 
αx + β in which the dimensionless coefficients are

α = 0.54044;		
(1)β = 3.1170 · 10–2.

The initial dependence of mountain height distribution 
can be approximated by the function

	
(2)

Indeed, summation of dependence hn and the approxi-
mating function h  (x) gives a rather good correspondence 
(Fig. 2a).

The obtained approximating function (2) allows deter-
mining the height of the nth mountain. Extrapolation of this 
formula for an unknown region allows determining the height 
of, e. g., the 600th or 700th mountain as h (600) = 3 291 m and 
h (700) = 3 020 m, respectively.

Deviations
For a quantitative assessment of the obtained approxima-
tion and of errors while extrapolating formula (2) into an 
unknown region, we shall find the deviations of the obtained 
function from the real height of the mountains. We shall see 
the deviation δhn as the difference

δhn = hn – h(n),		
(3)n = 1, 2, …

The dependence δhn of real deviations is shown in Fig. 2b. 
The same figure shows also the deviation interval: the mean 
square deviation (standard deviation) δh  =  155.5 ≈  156  m 
from the mean value <δh  >  =  –19.8  m. We see that most 
of the deviation values fit within the interval of two mean 
square deviations.

Like the initial mountain height distribution hn, the devia-
tion dependence δhn does not look very regular. The depend-
ence is neither monotonous nor periodic. In case some perio-
dicity is present in this dependence, it should be manifested 
in its Fourier spectrum. Figure 3 shows the |am| spectrum of 
dependence δhn:

Fig. 1a. Distribution of highest mountains worldwide (hn ≥ 3 500 m)

1 pav. Aukščiausių kalnų pasiskirstymas Žemėje

Fig. 1b. Logarithm distribution of heights of highest mountains in a double 
logarithmic scale

1b pav. Aukščiausių kalnų aukščio pasiskirstymas dviguboje logaritminėje 
skalėje

Fig. 2a. Distribution of world’s highest mountains (h  ≥  3  500  m) and the ap-
proximating theoretical function

2a pav. Aukščiausių žemės kalnų (h ≥ 3 500 m) pasiskirstymas ir aproksimuojanti 
teorinė funkcija
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here 	 (4)

We see that the deviation dependence δhn is not periodic 
but is similar to a noise described by the spectral density 
function S (f ) ∞ 1 / f α.

To verify this hypothesis, we shall decrease the number 
of harmonics from 548 to 500 and perform 10 casual Fourier 
transformations (this may be done in 48 independent ways). 

Let us average over these 10 transformations and limit our-
selves to the first 50 members. As follows from this averaging 
procedure, the dependence |am| may be approximated by the 
function

	 (5)

The spectral density function S (f ) ∞ |am|2, so we see that 
our hypothesis has come true: the mountain height depen-
dence δhn may be considered as noise S (f) ∞ 1 / f 1.967.

This type of deviations, in author’s opinion, is not inci-
dental. The noise 1 / f for α = 1 is known to manifest itself in 
various branches of science such as physics, biology, finances. 
Although at present the nature of this noise is not clear, the 
universal character of the phenomenon is related to the prop-
erties of fractal multitudes (Mandelbrot, 1999). However, in 
our case, noise S (f ) ∞ 1 / f 1.967 is close to 1 / f 2, indicating that 
neither the deviations nor the initial distribution of heights 
are a fractal multitude.

Results and discussion

The number of mountains of height no less than h
From the same theoretical formula (2) it is possible to de-
termine the number of mountains the height of which is no 
less than h:

	 (6)

here the values of the coefficients α and β are the same as in 
formula (1), h1 = 8 848 m. The unity term of formula (6) serves 
the purpose of numeration: here, the Everest is the mountain 
number 1 (not number 0). The number N of mountains with 
the height no less than h is determined within δNth  =  |Nk|, 
i. e.

	 (7)

Note here that the error δN strongly depends on h. For 
instance, the number of mountains higher than 3 500  m is 
534 ± 47, i. e. the relative theoretical εth = δNth / Nh · 100% is 
8.8%, whereas the actual error δN  =  548–53  =  4, i.  e. even 
less: ε = 14 / 548 · 100% = 2.6%.

Table 1 presents a list of relative error values also for other 
heights and, inter alia, shows the reliability of the obtained 

Fig. 2b. Deviations of approximated mountain heights from observed heights 
and the mean square deviation δhn = 156 m

2b pav. Kalnų aproksimuotų aukščių nukrypimai nuo esamų aukščių ir vidurkinis 
kvadratinis nuokrypis δhn = 156 m

Fig. 3. The Fourier spectrum of the deviations

3 pav. Nuokrypių Furje spektras

Ta b l e  1 .  Theoretical and real numbers of mountains no less than h high and their relative errors
1  l e n t e l ė .  Teorinis ir tikrasis skaičius kalnų, ne žemesnių nei h, ir jų reliatyvioji paklaida

h, km 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5
NTH
N

10
14

23
34

43
53

70
77

107
119

156
157

218
206

298
248

401
416

534
548

dNTH
dN

3.1
4

5.1
11

7.3
10

10
7

13
12

17
1

22
12

28
50

36
15

47
14

eTH
e

32
30

22
33

17
19

14
8.5

12
10

11
0.8

10
5.8

9.4
20

9.0
3.7

8.8
2.6
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theoretical formulae: the mean theoretical relative error 
<εth> = 14.5% exceeds the mean real error <ε> = 13.3%.

How many mountains are there on the continents?
To answer this question, we must strictly know what we 
may consider as a mountain. Some authors define a moun-
tain as a peak with a topographic prominence over a defi-
nite value. For example, according to the Britannica Student 
Encyclopedia, the term mountain “generally refers to rises 
over 2.000 feet (610 m)”. The Encyclopedia Britannica, on 
the other hand, does not limit a mountain to any height, 
merely stating that “the term has no standardized geologi-
cal meaning”.

There is no universally accepted definition of a mountain. 
Elevation, volume, relief, steepness, spacing and continuity 
have been used as criteria for defining a mountain (Gerrard, 
1990). In the Oxford English Dictionary, a mountain is de-
fined as “a natural elevation of the earth surface rising more 
or less abruptly from the surrounding level and attaining an 
altitude which, relatively to the adjacent elevation, is impres-
sive or notable”.

In England and Wales, the Department for Environment, 
Food and Rural Affairs for the purpose of right to roam leg-
islation has defined “a mountain” as all land over 600 meters. 
The Land and Reform Act 2003 (Scotland) does not appear 
to draw this distinction, and in Scotland the term “mountain” 
is more subjective, often being used for hills exceeding 3.000 
feet (914.4 m).

We take 600 m, 610 m and 914.4 m as the basis of these 
three numerical definitions of a mountain. Formulae (6) and 
(7) give the answer to the question regarding the number of 
mountains in the continents, which is Nmax = 3 826, 3 782 and 
2 793, respectively (Table 2).

Distribution density of mountains (orosity)
The reader might feel some doubts as to the practical value of 
knowing the total number of mountains, but it is of value as it 
allows to introduce the term of the mean distribution density 
of mountains (orosity) of the continents      :

	 (8)
(Nmax = 3 823;	 hmin = 600 m),

here S = 149 · 106 km2 is the total area of continents. The oros-
ity of a particular territory may differ from the mean value 
and is not related to its height above sea level but reflects the 
roughness of its surface:

	 (9)

Let us consider an example. Nepal is a mountainous 
country comprising nine of fourteen world’s highest mount- 
ains; its distribution density of mountains (orosity) is                . 
Therefore, investments into highway construction do not seem 
promising in this country. However, in the southern border of 
Nepal the orosity is             , i. e. highway building in this part 
of the country is quite realistic. Furthermore, the fuel con-
sumption while travelling by car is also related to the distribu-
tion density of mountains (orosity). Therefore, knowledge of 
the distribution density of mountains (orosity), alongside the 
mean height, may be of use in economic assessments.

What is the maximum possible height of a mountain?
Mountains of the continents only are considered in the 
present study. Yet, one has to realise that high mountains 
exist also in the oceans. For example, the major part of 
Mauna Kea mountain (Hawaii, USA) – about 6 000 m – is 
below sea level. The total height of this mountain is 
4 205 + 6 000 = 10 205 m, i. e. it exceeds the height of Everest 
(8 848 m) by about 1 300 m.

A natural question arises: are there any factors limiting 
the height of mountains? May the mountains be 20 or 50 km 
high on the Earth? Could such mountains have existed in the 
geological past?

Let us present a simple assessment of the maximum 
height of a mountain. The shear tension σr of compressed 
rock is related to the shear angle θ and the shear modulus of 
rocks through Hook’s law (Kosevich et al., 1986):

σr = Gθ,	 (10)

here                              is the rock shear modulus, E is Young’s mo- 

dule, h is Poisson’s coefficient. Shear tension is formed by

Ta b l e  2 .  The number of mountains no less than h m high above sea level
2  l e n t e l ė .  Skaičius kalnų, kurių aukštis ne žemesnis nei h virš jūros lygio

η, m 3 500 3 000 2 000 1 000 914.4 610 600
N 534 709 1 277 2 591 2 793 3 782 3 826
δN 47 63 123 342 387 667 682
ε, % 8.85 8.86 9.67 13.2 13.9 17.6 177.8

Notes. Nth – the number of mountains the height of which exceeds h determined by formula (6); N – the real number of mountains from the list (e. g., Scaruffi, 2008); δNth is a theoretical error of the 

number of mountains according to (7): δN = |N – Nth| – a real error of the number of mountains;                                       – a theoretical and 	         – a real relative errors per cent.

Pastabos. Nth – skaičius kalnų, kurių aukštis viršija h, apskaičiuotą pagal formulę (6); N – tikrasis kalnų skaičius iš sąrašo (pvz., Scaruffi, 2008); δNth – teorinė kalnų skaičiaus paklaida pagal (7); 

dN – |N-Nth| – tikroji kalnų skaičiaus paklaida;                                      – teorinė ir                              – tikroji reliatyvioji paklaida procentais.
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the huge weight of a mountain, acting on the area S at the 
foot:

	 (11)

here g = 9.81 m/s2 is free fall acceleration, ρ is rock density, 
hmax is the mountain’s height. Considering that Poisson’s co-
efficient µ < 1 (e. g., for basalt µ = 0.22–0.25 (Cerny et al.,

2009) and                            Pa, the density of the compressed

matter is higher than in normal conditions, ρ ≈  104  kg/m3 
and the shear angle θ ~ 0.1 (≈ 6o), from (10) and (11) we ob-
tain a single assessment of the maximum mountain height:

	 .	 (12)

This G height is measured from the foot. Thus, even Mau-
na Kea (10.2 km) does not exceed this maximum height of 
12.5 km.

It should be stressed that the maximum mountain height 
first of all depends on free acceleration at a similar rock min-
eral composition and in similar geological conditions. There-
fore, e. g., on Mars the maximum mountain height (hM) should 
considerably exceed the Earth’s mountains (hE = 8.848 km) 
due to a lower free acceleration:

	 (13)

here gE = 9.8 m/s is the free fall acceleration on the Earth’s 
surface and gM = 20.38 gE on the Mars surface. From formula 
(13) it follows that the highest mountain on Mars could reach 
about hM = 2.63 ·hE ≈ 23 km, which is rather close to the ob-
served values: the highest peak Olympus Mountain on Mars 
is as high as 21.171 km high with respect to the mean radius 
of this planet (Rees, 2006). This is the highest known moun-
tain of the Solar system.

Power and exponential approximations
From formula (2) it follows that the distribution of moun-
tains by height is not a scale-invariant dependence, because 
this property is absent in the exponential function. However, 
our intuition hints at a similarity. A shift to the logarithmic 
relations among the heights gives a power function:

	 (14)

If the scale x → kx and h → hk, the dependence (14) does 
not change. This means that the function is scale-invariant 
and may be related to fractal curves and surfaces.

It, however, does not imply that the authors that used 
fractality in geology were incorrect. If βxα << 1, then it fol-
lows from (2) that

	 (15)

i.  e.       may be regarded as a scale-invariant value. If

βxα ≥  1, i.  e.         ; the expansion of the approximate ex-

ponential function is not accurate. In our case, this should be 
manifested when h ≤ 4 424 m or n ≥ 310.

This is in accordance with the general rule. If we have a 
power-type dependence,

f (x) = βxα ,
x ∈ |0; b|,		  (16)

we may maintain that this dependence is satisfied by experi-
mental data, if the length of the variable interval of x does 
not exceed b:

	 (17)

Otherwise we could mistake this dependence for a very 
similar, but qualitatively different one, e. g., like in our case, 
for a power function.

Table  3 presents the standard deviations δN and Pear-
son’s correlation coefficients Cor for the observed heights and 
the heights determined by the mathematical approximating 
formula, in the first case, according to the power function 
a  =  4.513  ·  10–2 (these values are indicated in brackets). It 
should be noted that the proposed mathematical model strong-
ly depends on the number of mountains: the power function 
of 30 mountains h (x) = bxα is more precise to represent the 
decrease in height than the exponential function according to 
formula (2). However, in a larger interval when N = 548, the 
situation changes: formula (2) is about 591 : 156 ≈ 4 times bet-
ter to characterize the decrease in height.

Ta b l e  3 .  Dependence of deviations on the number of mountains N
3  l e n t e l ė .  Nuokrypių priklausomybė nuo kalnų skaičiaus N

N 30 540
δN 75 (51) 156 (591)
Cor 0.97 (0.99) 0.99 (0.91)

Thus, it is not the mountain height ratios but the loga-
rithms of these ratios that are similar, i.  e. a small piece of 
rock only approximately repeats the shape of the mountain; 
this similarity is more precisely described by the logarithm of 
the height ratio ln (h1 / h).

conclusions

The main conclusions of the study may be formulated as fol-
lows:

1. The height distribution of the highest mountains of the 
Earth (from 3 500 to 8 848 m) is approximated by the expo-
nential and not the power function.

2. The deviations from the obtained approximation of ob-
served heights of the mountains are close to noise 1 / f 2.
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3. The obtained mathematical approximation allows 
height assessment for mountains less than 3  500  m high. 
With the aid of the quantitative definition of the concept of 
mountain, we assess the total number of mountains on the 
Earth.

4. The total number of mountains allows introducing 
the term of distribution density of mountains (orosity) of a 
geographical region, which can be of use in economic assess-
ments.

5. The maximum possible mountain height on the Earth 
should not exceed 12.5 km and on Mars 23 km, which is in 
agreement with the known actual values.

The paper considers the distribution of mountains on the 
continents. However, the proposed method may be applied to 
Earth’s mountains in general. However, in this case we should 
account for differences in actual conditions: the pressure at 
the foot of a mountain, thanks to the effect of the Archimedes 
law, will be lower if a mountain, or at least part of it, is covered 
by water. The same applies to submerged mountains.

The author failed to find another theoretical method al-
lowing assessment of the number of mountains more than 
2 500 m high.

Thus, the spectrum density function of differences be-
tween the theoretical and the observed mountain height dis-
tribution is similar to the function 1 / f2. However, this me-
thod cannot answer the interesting and important question: 
what is the possible reason for this similarity? This answer 
seems to be within the competence of rheology and rock ma-
terial sciences.

Does it mean that B. Mandelbrot was wrong when pro-
posing to model the Earth’s surface by fractal multitudes? The 
results of the present study indicate that Nature and Truth, 
as always, are more subtle: locally, i. e. within a rather nar-
row interval, mountain height distribution may be consid-
ered as a fractal, but within a wide interval it is not a fractal 
any more. The situation is similar to that of manifold in the 
Euclidean space, but globally it is not. A simplified variant 
of this mathematical statement belongs to Nicolaus Cusano 
(1401–1464) who maintained that a straight line is part of a 
very large circle.

Approximation, more complex than regular fractality, is 
undoubtedly related to the physical properties of geological 
substances, such as the ratio of Si, Pn metal oxides that de-
termine the density, porosity, elasticity of rocks. Superfrac-
tality should manifest itself while studying the global spread 
of acoustic and electromagnetic waves in rocks. This directly 
pertains to geomagnetic and seismic phenomena.

Thus, does a small piece of rock resemble the mountain? 
Yes, it does; more precisely, similar are the dimension ratio 
logarithms. May they possibly hide in themselves the har-
mony of the music of mountains?
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Kalnų aukščio pasiskirstymo Žemėje 
matematinis modeliavimas

S a n t r a u k a
Aukščiausių Žemės kalnų pasiskirstymo analizė rodo, kad Žemės pavir-
šius gali būti modeliuojamas remiantis matematiniu paviršiumi, kuris 
yra sudėtingesnis nei įprastas fraktalas ir kurio dimensija nėra pasto-
vus dydis. Nustatyta, kad gautos kalnų aukščio aproksimacinės kreivės 
nuokrypiai nuo tikrojo kalnų aukščio sudaro statistinį triukšmą, artimą 
1 /  f 2. Įvertintas bendras kalnų skaičius ir galimas maksimalus kalno 
aukštis Žemėje. Įvestas kalnuotumo (angl. orosity) terminas, kuris gali 
būti naudingas darant ekonominius įvertinimus.

Raktažodžiai: kalnai, matematinis modeliavimas, fraktalas


