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We develop an analytical approach for the delayed feedback control of the Lorenz system close to a subcritical Hopf
bifurcation. The periodic orbits arising at this bifurcation have no torsion and cannot be stabilized by a conventional delayed
feedback control technique. We utilize a modification based on an unstable delayed feedback controller. The analytical
approach employs the centre manifold theory, the near identity transformation, and averaging. We derive the characteristic
equation for the Floquet exponents of the controlled orbit in an analytical form and obtain simple expressions for the threshold
of stability as well as for an optimal value of the control gain. The analytical results are supported by numerical analysis of the

original system of nonlinear differential-difference equations.
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1. Introduction

One of the most popular methods in chaos con-
trol research is the delayed feedback control (DFC)
method [1]. The method allows a non-invasive stabi-
lization of unstable periodic orbits (UPOs) of dynam-
ical systems. To apply this method no exact knowl-
edge of either the form of the periodic orbit or the sys-
tem equations is needed. The delayed feedback con-
trol algorithm has been implemented successfully in
experiments as diverse as electronic chaotic oscillators
[2-5], mechanical pendulums [6, 7], lasers [8—10], gas
discharge systems [11-13], a current-driven ion acous-
tic instability [14], a chaotic Taylor—Couette flow [15],
chemical systems [16, 17], high-power ferromagnetic
resonance [18], helicopter rotor blades [19], and a car-
diac system [20]. In the literature, many interesting
suggestions have been put forward for further applica-
tion of the method (see Ref. [21] for review). Recently
a challenging idea has been proposed [22-24] to use
the DFC for controlling pathological brain rhythms.

The DFC method is based on the online measure-
ment of a single output signal s(¢) that is a function
of the current system state z(t), s(t) = ¢ [x(¢)], and
uses the time-delayed difference s(t) — s(t — 7) mul-
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tiplied by a factor K as a control signal. If delay
time 7 is equal to the period 7' of an unstable peri-
odic orbit of the system, the orbit may become stable
under appropriate choice of the feedback strength K.
The method is non-invasive in the sense that the con-
trol force K [s(t) — s(t — 7)] vanishes when the target
state is reached.

Although the method is popular in experimental in-
vestigations, its theory is still in infancy. Systems with
time delay are hard to handle because the dynamics
take place in infinite-dimensional phase spaces. Even
linear analysis of such systems is difficult due to in-
finite number of Floquet exponents characterizing the
stability of controlled orbits. The linear and nonlinear
analysis of such systems is usually performed numer-
ically. So far, just one analytical result of a general
character has been obtained. It has been proven that the
method cannot stabilize UPOs with an odd number of
real positive Floquet exponents (the odd number limita-
tion) [25,26]. This is a topological limitation related to
the absence of a torsion of the controlled UPO. In addi-
tion, there are some analytical results concerning quan-
titative estimation of the stability of UPOs subjected
to delayed feedback [26,27], but they are of limited
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generality. Such estimations are elaborated only for
UPOs arising from a flip bifurcation.

In this context, a reasonable way for further de-
velopment of the delayed feedback control theory is
to look for problems allowing an analytical treatment.
Our idea for analytical approach is to consider dynami-
cal systems close to bifurcation points of periodic or-
bits. Some advances in this direction have been re-
cently achieved for dynamical systems close to the sub-
critical Hopf [28] as well as Neimark—Sacker (discrete
Hopf) [29] bifurcations.

In a short Letter [30], we have proposed a modified
delayed feedback controller with an additional unstable
mode in order to overcome the odd number limitation.
The success of such a modification has been numeri-
cally demonstrated for the Lorenz system but no the-
oretical foundation has been presented. In this paper,
we extend the ideas of Letter [30]. We develop a sys-
tematic analytical approach for delayed feedback con-
trol of dynamical systems close to a subcritical Hopf
bifurcation. UPOs arising from this bifurcation have
no torsion and cannot be stabilized by the conventional
DFC technique. We demonstrate our approach for the
Lorenz system as a representative of dynamical sys-
tems with torsion free unstable periodic orbits. Note,
that the control of a simple second order dynamical
system close to a subcritical Hopf bifurcation has been
considered in Ref. [28]. However, the theory presented
in Ref. [28] cannot be applied for high-dimensional
systems. An analytical approach developed in this pa-
per is applicable for any dynamical system with an ar-
bitrary large phase space dimension.

The rest of the paper is organized as follows. In
Sec. 2, we formulate the problem and introduce the
control algorithm. Section 3 is devoted to the analysis
of the free Lorenz system. By using the centre manifold
theory, near identity transformation, and averaging, we
obtain an analytical solution for an unstable limit cy-
cle arising in the neighbourhood of the subcritical Hopf
bifurcation. Then similar analysis is performed for the
controlled Lorenz system in Sec. 4. In the end of that
section, we analyse numerically the original system un-
der delayed feedback control and confirm the validity
of the analytical results. The paper is finished by con-
clusions presented in Sec. 5.

2. Problem formulation

We consider the paradigmatic chaotic system

t=o(y—x), (1a)
Yy=rr—y—2x2, (1b)
Z=uxy— bz, (lc)

originally introduced by Lorenz [31] as a model of tur-
bulent convection. In usual considerations of this sys-
tem the parameters ¢ and b are fixed respectively to the
values 10 and 8/3, and analysis is performed for the
variable parameter . For 0 < r < 1, the Lorenz sys-
tem has a unique stable steady state (a stable node) at
the origin C° : (0,0,0). For » > 1, the origin be-
comes a saddle and two additional symmetrical stable
fixed points C'*, with coordinates

(xjjf,yf,z]c) = (:I:\/b(r - 1), :I:\/b(r —1),r— 1) ,
2
appear. For r > ry, the steady states C* become un-
stable. The value [32]
o(c+b+3)
oc—b—-1
represents the point at which the subcritical Hopf bifur-
cation occurs. Just below this bifurcation point, for

rH = ~2 24.7368 3)

r=rg—Ar, 0<Ar<ry, ()

there are two small unstable limit cycles surrounding
the stable steady states C*. Moreover, at the same
values of the parameter r there exists a strange attrac-
tor [32]. Thus the system is multistable and depend-
ing on initial conditions the phase trajectory may be
either attracted to the one of the steady states or exhibit
a chaotic behaviour on the strange attractor.

Our aim is to stabilize the unstable limit cycles aris-
ing at the Hopf bifurcation using the delayed feedback
control technique. Especially we are interested in ana-
lytical treatment of this problem. Note that the periodic
orbits arising at this bifurcation are torsion free and we
need an unstable controller. Specifically, we consider
the following control algorithm:

& =o(y—uz), (5a)
g=rz—y—xz+W(y—yys), (5b)
i=axy—bz, (5¢)
W =AW+ K|[y—ylt—1)]. (5d)
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Here as well as in Ref. [30] we suppose that y is an ob-
servable and apply the control perturbation W (y — )
only to the second equation of the Lorenz system.
However, unlike the Ref. [30] we use a nonlinear per-
turbation. As pointed out in Ref. [28] this is a neces-
sary requirement when considering the system close to
a Hopf bifurcation in order to provide the coupling be-
tween the controlled system and controller in averaged
equations. The parameter y in the perturbation is the
value of the observable when the system is in one of the
stable steady states C*. For definiteness, we consider
the control of the periodic orbit surrounding the fixed
point C'* and take y; = y;{ = /b(r — 1). Note that
the value y; can be measured experimentally, since C'*
is the stable fixed point.

Equation (5d) describes an unstable delayed feed-
back controller, which supplements the system with an
additional unstable Floquet mode and eliminates the
odd number limitation [30]. The positive parameter
A > 0 defines the value of the additional Floquet ex-
ponent. The parameter K denotes the strength of the
feedback gain. The delay time 7 in Eq. (5d) is equal
to the period T of the unstable periodic orbit such that
the controller does not change the periodic solutions of
the Lorenz system with the period T = 7. Thus if the
stabilization of the periodic orbit is successful there is
no power dissipated in the feedback loop.

In a real experiment, the period 7" of an UPO is not
known a priory and different strategies can be used for
selection of the right value of the delay time 7. A uni-
versal approach is based on minimization of the ampli-
tude of the feedback perturbation K [y — y(t — 7)] [1].
An adaptive technique with automatic adjustment of
the delay time has been considered in Ref. [33]. An-
other approach is based on minimization of the dif-
ference 7 — Ty (7), where Ty (7) is a period of the
output signal y(t), which generally differs from 7" if
T % T [34].

3. Analysis of the free Lorenz system

We start our analysis with the free Lorenz sys-
tem (1). First we transform the variables using the
eigenvectors of the steady state C' at the bifurcation
point 7 = rpg as a basis for a new coordinate system.
Then applying the centre manifold theory we elimi-
nate a fast non-oscillating mode and obtain a reduced
system for oscillating modes. Using the near identity
transformation we transform the equations for the os-
cillating modes to the normal form of the subcritical
Hopf bifurcation. As a final result of this section, we

obtain an analytical solution for the unstable periodic
orbit arising from this bifurcation.

3.1. Transforming the system variables

Our aim is the control of the unstable limit cycle sur-
rounding the stable fixed point C*. Thus it is conve-
nient to shift the origin to this point by using the trans-
formation

x:x?Jrul, y:y;{+u2, z=zp+us. (6)
Defining the state vector
T
u = (u1 ug u3) (N

we rewrite the Lorenz equations in the matrix form

u = Apu —cAju+ N(u), 8)
where matrices Ao, A1, N (u) are

—0 o 0
Ag= 1 1 —Vom-D |, 9

\/b(TH — 1) \/b(TH — 1) —b

000 0
Ay=1(00-1|, N(u)=|-wus|, (10)
110 U1U2

and parameter

e = \/b(ra — 1) = \/b(r — 1) = \/b/(rn — 1) Ar/2

an
defines the closeness of the system to the bifurcation
point » = ry. This is the main control parameter the
smallness of which we exploit in the following pertur-
bation theory.

The first two terms Agu and £ A1 u on the right-hand
side of Eq. (8) represent the linear part of the vector
field, while the last term N (u) defines the nonlinear
part. The matrix Ay — €A1 is the Jacobian derivative at
the fixed point C*, where Ay is the value of the Jaco-
bian calculated at the bifurcation point r = ryy and ¢ Ay
is a small deviation due to the shift of the parameter r
from the bifurcation point.

We now transform the system variables in such a
way as to diagonalize the unperturbed linear part Agu
of the vector field. For this aim, we solve the eigen-
value problem for the matrix A,

Aoqb(“) — %(p(#) ) (12)

As a result we obtain three eigenvalues

vy~ —13.6667 (13)

v =7 =iw~ 9.62451,
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and three corresponding eigenvectors ¢(1), (2, ().
For compactness of presentation we do not write them
out explicitly.

The first two eigenvalues are imaginary and their
eigenvectors are complex conjugate. The third eigen-
value is real and negative. We use the eigenvectors o)
as a basis for a new coordinate system and apply a lin-
ear transformation of the system variables:

3
u(t) =Y &)W (14)
pn=1

The new dynamic variables &,(t) (¢ = 1,2, 3) define
the amplitudes of the system eigenmodes at the bifurca-
tion point = ry. Note that & (¢) and &2(t) have to be
complex conjugate, &5(t) = £1(t), in order to provide
the real-valued solution for u(¢). To derive equations
for the new variables &,,(t) we insert Eq. (14) into sys-
tem (8):

3 3 3
Z &(b(u) — Z )\“&@(u) —e Z A1¢(u)§#
pn=1 1

= pn=1

3
—HN(§:@¢M). (15)

p=1

To obtain equations for &,(t) in the explicit form we
have to solve the adjoint eigenvalue equation

P Ay = ™) (16)

and obtain the left eigenvectors () that satisfy the
normalization conditions

<¢(V)|¢(M)> =0y, p,v=123. (17

Multiplying Eq. (15) by 1) from the left side and us-
ing conditions (17) one obtains finally the equations for
the eigenmodes

3

& =& —e > (P A1|d")E, + g0 (&1, &, &)

p=1

= fu(61,62,83) .

where g, (&1, &2, &3) are the nonlinear functions

N (,il @qb(“)) > :

v=1,2,3. (19)

v=123, (18)

gl/(£17 §2a 53) = <¢(V)

Until now Egs. (18) are exact. They are equivalent to
the original Lorenz system (1). However, this form is

more convenient when analysing the system dynamics
close to the Hopf bifurcation, for small values of the
parameter €.

3.2. Reducing the system dimension

Close to the bifurcation point € = 0, Egs. (18) admit
an analytical treatment. First we note that for ¢ = 0
the linear part of the vector field is diagonal and small
deviations from the origin are described by three linear
independent modes S,, = &, v = 1,2,3. The first
two modes are oscillating, v, 2 = Ziw, and the third
mode is decaying, v3 < 0. This enables us to apply the
centre manifold theory and exclude the decaying mode.

To get a reduced system of equations for the oscil-
lating modes in relation to the parameter €, we change
for a time the role of the parameter €. We regard € as
an additional dependent variable that satisfies the trivial
equation [32]

e=0. (20)

Then for the extended system (18), (20), linearized at
the fixed point (£1,&2,&3,¢) = (0,0,0,0), the &3 axis
is a stable subspace and the ({1, &2, €) is the centre sub-
space. Thus according to the well-known theorem [32],
in the (&1,&2,&3,¢) phase space there exists a centre
manifold

& = h(&1,&,¢) (21)
tangent to the centre subspace
h(0,0,0) =0,
% = % = % =0. (22)
&1 (0,0,0) ) (0,0,0) Oe (0,0,0)

We expand the manifold function in Taylor series up to
the second order terms:

h(€1,&a,€) = Kaooél + Koaoés + Kooee? (23)

+ Ko11&2e + Ki01&1€ + K1106162 -

The linear terms are omitted to satisfy the condi-
tions (22). Differentiating (21) we obtain

. oh oh :
{3 = 8_5151 + 8_5252 ; (24)
or
Oh
f3(517§2,h(51a52a5)) = aiﬁfl(€17£27h(§la€27€))
+%f2(£17§27h(§17§275))' (25)

&2
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By equating coefficients at different orders £7¢0e!
(n + m + 1 = 2) we get a linear system of equations
yielding the coefficients of the expansion (23). Solving
this system we obtain:

K200 ~ —0.0047 4+ 0.0029i y

*
Koo =Ky, Kooz =0,

K011 ~0.0204 — 000251,

K1 =K3;, Ko ~0.0041. (26)

Substituting Eq. (21) in two first equations of the sys-
tem (18) we obtain two equations for the oscillating
modes:

& = fu(é1, &, h(&, ,9)),

Due to the property {2 = £ these equations are equiv-
alent. Using the notations

v=1,2. (27

Si=¢ &L={=¢ (28)
they can be presented in the form
€= (6,6 hE € 2). (29)

The function f1(&,&*, h(£, &%, ¢)) in Eq. (29) is rather
complicated. It contains terms up to the fourth order.
However, most of them drop out when performing the
averaging in order to transform this equation to a nor-
mal form. We write out explicitly only the relevant
terms:

€ =1wé + ca1o€ + an|€[*¢

2 2 2
+ a0€” + aozf* + a11\§| +.... (30
Here ayg, a21, a2, age, a11 are the complex constants:

a1p~ —0.1803 — 1.0827i,
ag ~0.0005 4 0.0034i ,
as0 ~ 0.2218 + 0.2430i ,
ag2 ~0.0124 — 0.0839i ,

a11 ~ —0.2804 + 0.2342i . 31)

Equation (30) represents the reduced system, which de-
scribes well the Lorenz dynamics close to the subcrit-
ical Hopf bifurcation. To obtain the solution for the
unstable limit cycle arising from this bifurcation, in the
next paragraph we transform this equation to the nor-
mal form.

3.3. Near identity transformation and parameters of
the unstable limit cycle

The reduced system (30) can be transformed to the
normal form of the subcritical Hopf bifurcation

0= Am+ can’n* + O(n|”) (32)

either by using a perturbation theory based on the mul-
tiscaling expansion or by applying a near identity trans-
formation. Both approaches lead to the same result, but
the second approach is simpler to handle and we use it
in this paper.

Following Ref. [32], the near identity transformation
that transforms Eq. (30) to the form (32) is

E=n+ >
2<j+k<3
Substituting Eq. (33) in (30) and using Eq. (32) one
obtains a polynomial equation with respect to 7 and n*.
Equating coefficients of the polynomial equation yields
the parameters Ay and c; of the normal form (32),

Rk +0(|n"). (33)

)\f =iw +€ajg, (34)

i 2
a=- (azoan - §a02a82 - a11aT1) + a1 + O(e)

~0.0022 — 0.02331, (35)

and the coefficients r;; of the near identity transfor-
mation (33). The coefficients of leading terms in the
transformation are

2a20

P [P T 02
20 = > K11 = ~ » K02
Af A%
f

= o)
2)\f — )\f

Equation (34) defines the eigenvalue of the fixed
point C™. For ¢ > 0, it is stable since Re(\f) =
eRe(aip) < 0. The unstable limit cycle surrounding
this fixed point can be found by solving the normal
form equation (32). By substitution 7 = Rexp(iO),
where R and © are real-valued variables, this equation
can be presented in the form

© =TIm(\s) + Im(c1)R?, (37a)

R=[Re(\f) + Re(c)R?| R.  (37b)

From Eqgs. (37b) and (34) it follows that the radius of
the limit cycle is

Ry = 1/—Re(alo) Ve~ 914722, (38)
Re(cl)
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The frequency of the limit cycle is determined by the
right-hand side of Eq. (37a) at R = Ry:

Im(ey)
Re(cy)

~9.6245 — 3.0345¢ . (39)

wo=w + [Im(ayg) — Re(ap)| €

Thus the analytical solution of the normal form equa-
tion (32) corresponding to the unstable limit cycle is

no(t) = Roexp(iwpt) . (40)

The dynamics of the mode £ corresponding to this so-
lution are obtained by inserting Eq. (40) (n = no(t)) in
the transformation formula (33).

Finally, one can easily obtain the Floquet expo-
nent Ag of the unstable limit cycle. Linearization of
Eq. (37b) at the fixed point R = R leads to the ex-
pression

Ao =Re(\f) + 3Re(c1)RE =
— 2Re(a19)e ~ 0.3607¢. (41)

We see that the the Floquet exponent is proportional to
the parameter € and is positive for ¢ > 0.

4. Analysis of the controlled Lorenz system

In this section, we analyse the Lorenz system under
delayed feedback control described by Egs. (5). We
exploit a relationship between the characteristic equa-
tions for the Floquet exponents of two different control
problems, the delayed feedback control, and the pro-
portional feedback control. The latter problem is much
more simpler and admits an analytical treatment sim-
ilar to that described in Sec. 3. As a result we obtain
the characteristic equations for the Floquet exponents
of the Lorenz system under delayed feedback control in
analytical form. We finish the section with numerical
analysis of the original system of nonlinear differential-
difference Eqgs. (5).

4.1. Proportional versus delayed feedback

First, we rescale the controller variable and parame-
ters

W=cw, A.=¢e)., K=ck 42)

to rewrite the controlled Lorenz system (5) in a more
convenient form

i=o(y—z), (43a)
g=re—y—zz+ewly—yy), (43b)
2=y — bz, (43c)
W =edw+ky—y(t—7)] . (43d)

Generally this is a rather complicated system of non-
linear differential-difference equations. The dynam-
ics of the system take place in an infinite-dimensional
phase space and reduction of the phase space dimen-
sion via the centre manifold theory is a nontrivial task.
To overcome the problem of an infinite dimensional
phase space we proceed in the following way.

Analogously to Ref. [27], we consider the propor-
tional feedback control instead of the delayed feedback
control, i.e., in Eq. (43d) we replace the delay term
y(t — ) with the periodic solution of the free Lorenz
system yo(t) corresponding to the unstable limit cycle,
which we intend to stabilize. Then in place of the sys-
tem (43) we get

i=a(y—x), (44a)
y=rr—y—xzz+ewly -y, (44b)
i =ay— bz, (44c)
w=elew +k[y —yolt)] . (44d)

Both Egs. (43) and (44) have the same periodic solution
corresponding to the desired limit cycle. Although the
limit cycle has different Floquet exponents for the sys-
tems (43) and (44), there exists a relationship between
these two Floquet problems.

In the case of the delayed feedback control, the Flo-
quet exponents are determined by linearization of the
system (43):

ot = o(0y — dz), (45a)
0y = (r — z9)0x — 0y — x00z + €(yo — ys)ow,
(45b)
0z = —bdz + xody + Yooz, (45¢)
dw = edcow + k[dy — oy(t — 7)]. (45d)

Here [z, dy, 0z] denote small deviations from the pe-
riodic orbit [z (), yo(t), z0(t)] = [zo(t + 7),y0(t +
T), z0(t + 7)| that satisfies the free system (1), and
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dw = w. Due to the Floquet theory the delay term
dy(t —7) in Eq. (45d) can be eliminated and the system
of differential-difference equations (45) can be trans-
formed into the system of ordinary differential equa-
tions. The Floquet decomposition of solutions of the
system (45) implies that dy(t) = exp(At) U(t), where
A is the Floquet exponent and U(t) = U(t — 7) is a
periodic function. It follows that the delay term can be
expressed as dy(t — 7) = exp(—A7) dy(t). The price
one has to pay for the elimination of the delay term is
that the variational equations (45) defining the Floquet
exponent depend on the Floquet exponent itself.

In the case of the proportional feedback control the
Floquet exponents are defined by linearization of the
system (44). This leads to variational equations similar
to Eqgs. (45) with the only difference that the last term
in Eq. (45d) k[oy — dy(t —7)] = k[1 —exp(—AT7)]dy is
replaced by kdy. It follows that the Floquet exponents
for the delayed feedback control can be obtained from
linearized system (44) by using the substitution

k — k[l — exp(—AT)]. (46)

Thus rather than analysing the system of differential-
difference Eqs. (43) we can focus on the analysis of
more simple system (44) described by ordinary differ-
ential equations. If we manage to derive analytically
a characteristic equation for the Floquet exponents of
the system (44), then we can use the substitution (46)
and obtain the characteristic equation for the case of the
delayed feedback control system (43).

System (44) is nonautonomous due to the time-
depended term yo(t) in Eq. (44d). It is convenient to
transform this system to the autonomous form by sup-
plementing it with an additional free Lorenz system

.fo = O'(yo — SUQ) y (473.)
Yo = TT0 — Yo — T020, (47b)
ZQ = XoYo — bZU . (470)

We suppose that the initial conditions of the sys-
tem (47) are chosen on the stable manifold of the de-
sired limit cycle, such that its solution converges to the
limit cycle. As a result these equations generate the pe-
riodic signal yo(t) = yo(t + 7) which is used as an
input in Eq. (44d).

Our aim now is to reduce the dimension of the sys-
tem (44), (47). But first we transform the variables in
a similar way as it has been done in Sec. 3.1. We shift

the origin in Eqgs. (44), (47) to the fixed point C* and
obtain

= Apu—cAu+ (01 O)Tawug + N(u),
(48a)
W = eAew + k[ug — upe], (48b)
ug = Aoup — eA1up + N(up) . (48¢)

Here the vector u is defined analogously to the vector
u in Egs. (6) and (7),

T
up = (uo1 up2 Uoz)” =
T
(:co — x}r Yo — y;f 20 — zf) . (49)

Using the linear transformation (14) for the vector u
and similar transformation

3
uo(t) =Y Lou(t) ™ (50)
pn=1

for the vector ug we finally transform the Lorenz sys-
tem under proportional feedback control to the form

3

éu =Yé — € Z<¢(V)|A1’¢(#)>§u

p=1

3
tew Y S dYe, + 9o (61,60, &) =

p=1

FV(£17£27§37w)7 V:172737 (513)
3
b= edw+k Y @8 E — Eoul, (51b)
pn=1
. 3
§ov = Mwéov — € Z<¢(V)|Al‘¢(u)>§0u
p=1
+ gv(&o1,802,603), v=1,2,3, (5lc)

convenient for application of the centre manifold the-
ory. The nonlinear functions g, are defined by Eq. (19).

For small values of the parameters €, A, and k, the
system (51) can be treated analytically in much the
same way as the free Lorenz system.
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4.2. Reducing the dimension of the Lorenz system
controlled by proportional feedback

First we reduce the dimension of the system (51) us-
ing the technique described in Sec. 3.2. For ¢ = 0,
Ae = 0, and k = 0, the linear part of the vector field
is diagonal and small deviations from the origin are de-
scribed by éy =&, w = 0, and éoy = v,€0, With
v = 1,2,3. The modes &1, &2, £o1, o2 are oscillating
with the eigenvalues 1 2 = fiw, the mode w has zero
eigenvalue, and the modes &3, £y3 are decaying, since
«3 < 0. Thus one can apply the centre manifold theory
and exclude the decaying modes.

In order to get a reduced system of equations in re-
lation to the parameters €, )., and k, we regard them
as additional dependent variables satisfying the trivial
equations

A=0, k=0. (52)

The extended phase space of the system (51), (52)
is defined by dynamical variables (£1, &2, &3, €, &o1,
€02, o3, w, k, Ac.). For this system, linearized at
the origin, the plane ({3, &p3) is a stable subspace and
the (&1, &2, o1, €02, €, w, k, Ac) is the centre subspace.
Thus in the extended phase space there exists a centre
manifold

(f:a) _ (hc(§17§2,5a§017502,w7k,>\c)> _

£=0,

€03 ho(8o1, §o2: €)
(33)
tangent to the centre subspace at the origin:
H((0)=0, DH(0)=0. (54)

Here D H denotes the Jacobian of derivatives with re-
spect to all variables (&1, &2, o1, £02, €, w, k, ;) of the
centre subspace. First we note, that the function hg de-
pends not on all variables of the centre subspace but
only on the subset (£o1, o2, €). This is due to the fact
that Eq. (51c) is independent of Egs. (51a) and (51b).
Equation (51c) corresponds to the free Lorenz system
and coincides with Eq. (18). It follows that the man-
ifold function hg coincides with that of Eq. (23), i.e.,
ho = h(&o1, 02, €), and hence

€03 = h(éo1, 02, €) - (55)

Substituting Eq. (53) in (51) one obtains the equa-
tion for the manifold function H, similar to Eq. (25).
Direct analysis of this equation shows that the ex-
pansion of the function h. up to the second or-
der terms also leads to the expression (23), i.e.,
he(€1, €2, €, 01, €02, w, K, A\c) =h(&1, &2, €), and hence

53 = h(gla 527 5) . (56)

It turns out that the controller does not change the man-
ifold function of the controlled system. Substituting
Eq. (56) in the first two Egs. (51a) (with v = 1, 2)
one obtains the equation for the oscillating mode of the
controlled system

€= F (&€ h(E € e),w), (57)

where £ = & = &5. Writing out explicitly only the
relevant terms of the function F one finally obtains the
reduced equation for the controlled system in the form

é: 1w€ + Eal()f + €b11w§ + 021‘§|2§ +

+ ag€? + ageé™ + a6 + . .. (58)

similar to Eq. (30). The only difference is that here we
have an additional term b1, w¢ related to the control
perturbation. The coefficients a9, as1, azg, a2, a1
are defined by Eq. (31) and the value of the coefficient
b11 18

b11 ~ 0.4278 — 0.05051. (59)

Equation (58) has to be supplemented by Eq. (51b)
for the variable w to complete the system of reduced
equations describing the dynamics of the Lorenz sys-
tem under proportional feedback control. Writing ex-
plicitly the sum in Eq. (51b) and substituting Egs. (55)
and (56) for the decaying modes, one obtains

w=eXew + koS (€ — €o) + koS (€5 — &)

+ koS [h(E, €% e) — h(&o, &5, e)] . (60)

Here &y = £o1 = &g s the solution of the free Lorenz
system for the oscillating mode corresponding to the
unstable limit cycle.

4.3. Near identity transformation and averaging

We use the near identity transformation (33) to sim-
plify the reduced system (58), (60). First we transform
Eq. (58). By substituting Eq. (33) in Eq. (58) and using
technique described in Sec. 3.3 we derive the normal
form equation similar to Eq. (32) but with an additional
control perturbation ebijwn :

0=\ + cin®n* + ebjywn. (61)

Here we have restricted ourselves with the leading
term in the control perturbation, i. e., in the expression
ebiwé = ebpiw(n + O(|n]?)) we have omitted the
O(|n|?) terms.

We now simplify Eq. (60). Again we use the near
identity transformation (33) and transform the variables
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(&,&) — (n,mp). Afterwards we average Eq. (60)
over the period 7 = 27 /wq of the limit cycle. We sup-
pose that w is a slowly varying variable. The variable
1o is defined by Eq. (40), i.e., no(t) = Rgexp(iwpt).
For the variable 7, we suppose that it can be presented
in the form 7(¢t) = A(et) exp(iwot), where A(et) is a
slowly varying complex amplitude. Then the averaging
eliminates all the terms containing the fast exponents,
exp(Eimwot), with nonzero integer m, and we obtain

i = edew + kP (I = lmol?) . (©62)
where coefficient P is
i *
P= » (an(ﬁgl) - G11¢§2)> + K110</5(23) + O(e)

~ —0.0243 . (63)

In the next paragraph, we exploit the simplified sys-
tem of Egs. (61), (62) to obtain the characteristic equa-
tion for the Floquet exponents of the controlled system.

4.4. Stability analysis of the controlled system

By substitution 7 = Rexp(i©), Egs. (61), (62) can
be presented in the form

© = Im(\f) + Im(c1) R* + elm(b11)w, (64a)

R = [Re(Af) + Re(c1) B + eRe(bir)w| R, (64b)

w = eXaw + kP (R? — R}) . (64c)
These equations have a solution (©,R,w) =
(wot, Ro, 0), which corresponds to the limit cycle of
the free system. Linearization about this solution leads
to the variational equations

60 = 2Im(c;)Rod R + eIm(by1 )dw , (65a)
OR = AgdR + eRe(b11) Rodw , (65b)
6th = 2kPRyOR + eXow . (65¢)

Here Ag is the Floquet exponent of the free orbit de-
fined by Eq. (41). Equations (65b), (65¢) are indepen-
dent of Eq. (65a) and define the non-zero Floquet ex-
ponents of the controlled limit cycle, while Eq. (65a)
defines the zero Floquet exponent. The non-zero Flo-
quet exponents A satisfy the quadratic equation

A% — (Mg + eX)A + Mg +€2Qk =0,  (66)

where
Q =2P Re(bn)Re(alo)/Re(cl) ~ 1.7432. (67)

We recall that Eq. (66) is the characteristic equation
for the Floquet exponents of the limit cycle under pro-
portional feedback control. To derive the characteristic
equation for the case of the delayed feedback control
we apply the substitution (46). As a result we obtain
the quasipolynomial characteristic equation

A% — (Ao 4+ o)A + Ao

+e2QKk[1 — exp(—AT)] = 0. (68)
By rescaling the Floquet exponents
A= 6)\, Ao = 8)\0 s (69)

this equation can be presented in a more convenient
form

A2 — (Mo + X)X+ Ao

+ Qk[1 — exp(—eAT)] = 0. (70)
From Egs. (41) and (69) it follows that
Ao ~ 0.3607. (71)

Equation (70) is the main result of this paper. It de-
fines the Floquet exponents of the controlled Lorenz
system close to the subcritical Hopf bifurcation in rela-
tion to the bifurcation parameter € and the parameters
Ac and k of the unstable delayed feedback controller.

The quasipolynomial Eq. (70) has an infinite number
of solutions, since it defines the Floquet exponents of a
system described by differential-difference equations.
In the general case, the solutions of Eq. (70) can be
determined numerically. However, the leading Floquet
exponents close to the bifurcation point can be obtained
analytically. For | \|7 < 1, we can use an approxima-
tion exp(—eA7) & 1 — eA7, which transforms Eq. (70)
into the simple quadratic equation

A2 — (Mo + Ao — EQeT)N + XA = 0. (72)

The solutions of this equation are

i\/()\o +)\c4— RQer) | 73

In Fig. 1(a), we compare the leading Floquet ex-
ponents of the controlled system determined by three
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Fig. 1. (a) Real parts of leading Floquet exponents of the con-
trolled limit cycle as functions of the control gain for ¢ = 0.1,
Ac = 0.2. Dashed and solid lines show the solutions of the charac-
teristic Eqs. (72) and (70), respectively. Dots correspond to the
values of Floquet exponents obtained from the exact variational
Egs. (45). (b) Root loci of Eq. (70) as k varies from 0 to oo for
the same parameter values as in (a). Crosses and black dot denote
the location of the roots for £ = 0 and k£ = oo, respectively.

different methods, namely, (i) by solving the quasi-
polynomial Eq. (70), (ii) using the solutions (73) of
the quadratic equation (72), and (iii) by solving the ex-
act system of variational Egs. (45). Equation (70) has
been solved by the Newton—Raphson algorithm. The
numerical analysis of the variational Egs. (45) has been
performed by the algorithm described in Ref. [35]. All
the three above results are in good quantitative agree-
ment, as viewed in Fig. 1(a). Thus the leading Floquet
exponents are reliably predicted by the simple analyti-
cal expression (73).

The mechanism of stabilization is evident from
Fig. 1(b). For k = 0, two real positive solutions of
Eq. (72), A = Xp and A = )., describe an unstable
eigenvalue of the free system and the free controller, re-
spectively. With increasing k&, the eigenvalues approach
each other on the real axis, then collide and pass to the
complex plane. For k = kg, where

ko = ()\0 —+ /\c)/QET, 74)

they cross the imaginary axis and move symmetrically
into the left half-plane, i.e., both the system and the

20
10
> 0- ‘ ‘
-10 -] ‘ i
20

= 1 4 1
0 50 100 150

k [y-y(t-1)]
o

L T L T
0 50 100 150
(c) t

Fig. 2. Dynamics of (a) variable y, (b) controller variable w, and
(c) delayed feedback perturbation k[y — y(t — 7)]. The initial con-
ditions are x(—157) = 8.1096, y(—157) = 13.0372, z(—157) =
14.2747, w(—=157) = 0. y(t) = 0 for =157 < t < —147.
The control is initiated at ¢ = 7. The values of the parameters are
e =01, =027=0.6740, k = 0 for —157 < ¢t < 7 and
k=9.25fort > 7. For |y — y(t — 7)| > Ymax = 1.2, the con-
troller is off (see Sec. 4.5 for details). The black regions are densely
filled by oscillations.

controller become stable. An optimal value of the con-
trol gain is

kop = kO +2v )\0)\6/@6‘7' ) (75)

since it provides the fastest convergence to the stabi-
lized limit cycle with the characteristic rate Ay, =

—vVAoAe.
4.5. Numerical demonstrations

To verify the validity of the linear theory we have nu-
merically investigated the original system of nonlinear
differential-difference Eqgs. (43). For the set of param-
eters ¢ = 0.1 (r = 24.1439), \. = 0.2, k = 9.25,
7 ~ 0.6740, the results are presented in Fig. 2. In nu-
merical simulations, the controller is switched on only
when the system is close to the desired periodic or-
bit and switched off when it is far away from the or-
bit. Specifically, we proceed in the following way. For
large values of the quantity |y — y-| > Yinax = 1.2, we
turn off the controller, i.e., we take k¥ = 0 and elimi-
nate the term ew(y — yr) in Eq. (43b). The controller
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variable is dropped to zero, w = 0, at every moment of
the turning off.

Without control (f < 7), the Lorenz system demon-
strates a chaotic behaviour on the strange attractor. For
t > 7, the control algorithm starts to act and after a
transient process the controlled system approaches a
previously unstable limit cycle, and the feedback per-
turbation vanishes.

5. Conclusions

We have developed an analytical theory of the unsta-
ble delayed feedback controller proposed in Letter [30]
for stabilization of unstable periodic orbits without tor-
sion. The theory is applicable for any dynamical sys-
tem close to a subcritical Hopf bifurcation. The pe-
riodic orbits arising at this bifurcation satisfy the odd
number limitation and could not be stabilized by the
conventional delay technique. Our analytical approach
is demonstrated with the Lorenz system.

To compare our approach to that presented in
Ref. [28] we note that a simple second order dynami-
cal system under delayed feedback control considered
in Ref. [28] has been treated analytically by the aver-
aging method. Here, in the case of a more complex
third order dynamical system, we had to utilize addi-
tional tools of nonlinear dynamics, namely, the centre
manifold theory, near identity transformation, and the
averaging. It should be recognized that instead of the
near identity transformation the multi-scaling approach
can be used. Both approaches lead to the same results,
but we preferred the first approach in this paper. By
using these tools we managed to derive analytically the
characteristic equation for the Floquet exponents of the
Lorenz system under delayed feedback control. Solv-
ing this equation we have determined simple analytical
expressions for the leading Floquet exponents as well
as for the threshold of stability and the optimal value of
the control gain. Although the analytical approach has
been demonstrated for the specific third order system,
its extension to systems with the phase space dimension
higher than three is straightforward.

We emphasize that the theory of the delayed feed-
back control is very complicated. Therefore any ana-
lytical results even though they are elaborated for a par-
ticular class of dynamic systems represent a valuable
contribution to the theory of delayed feedback control.
The analytical results obtained in this paper give a bet-
ter insight into the mechanism of the delayed feedback
control of unstable periodic orbits without torsion and
are important for optimizing the control technique.
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UZDELSTO GRIZTAMOJO RYSIO VALDOMOS LORENCO SISTEMOS ANALIZINIS TYRIMAS
SUBKRIZINES HOPFO BIFURKACIJOS APLINKOJE

V. Pyragas, K. Pyragas

Puslaidininkiy fizikos institutas, Vilnius, Lietuva

Santrauka

I$plétojame analizine teorija uZdelsto griZtamojo rySio valdik-
liui (UGRYV), valdan¢iam Lorenco sistema, esancia arti subkrizi-
nés Hopfo bifurkacijos tasko. Sios bifurkacijos metu atsirandangiy
periodiniy orbity topologija riboja UGRY, ir jy nejmanoma stabili-
zuoti jprastiniu UGRV metodu. Topologiniam ribojimui apeiti nau-

dojame nestabily valdiklj. Analiziniai tyrimai grindZiami centrinés
daugdaros teorija, beveik tapacia transformacija bei vidurkinimo
metodu. AnaliziSkai gauname charakteringas lygtis, kuriy Saknys
yra valdomos orbitos Floké rodikliai. Taip pat gauname papras-
tas iSraiSkas, nusakancias valdiklio griZtamojo rySio stiprio stabi-
lumo slenksting bei optimalig vertg. Analizinius rezultatus patvir-
tina iSeitinés valdomos Lorenco sistemos skaitinis integravimas.



