
Lithuanian Journal of Physics, Vol. 48, No. 1, pp. 49–58 (2008)

PROPERTIES OF AUGER ELECTRONS FOLLOWING IONIZATION
OF POLARIZED ATOMS BY POLARIZED ELECTRONS
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The general expression for the differential cross-section describing Auger decay following the ionization of polarized atoms
by polarized electrons is obtained in a two-step approximation. In the case of ionization of non-polarized atoms by non-
polarized electrons, the expressions for the parameters of angular distribution of Auger electrons and angular correlations
between Auger and escaping electrons are derived as special cases of the general expression. The magnetic dichroism in
the angular distribution of Auger electrons as well as in the total cross-section of polarized atoms ionized by non-polarized
electrons are also investigated.
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1. Introduction

Inner-shell ionization of atoms by electrons and
electromagnetic radiation is a powerful tool for the in-
vestigation of matter and interactions and have both
theoretical and practical importance [1]. The ionized
atom can ‘remember’ the direction of polarization of
the incident electron or photon and the following Auger
electron may have a nonisotropic angular distribution
[2]. For the investigation of such processes, a number
of methods have been developed [2–7]. Density matrix
formalism [3] is the usual method for the investigation
of polarization and angular distributions in two-step
processes. A unified quantum collision theory in the
wave-packet approach for the analysis of the kinemat-
ics of various atomic collision processes by using the
density matrix and helicity formulations was proposed
in [4]. Recently Da Pieve et al. [5] have commenced
studying the angular correlation between a photoelec-
tron and a subsequent Auger electron from atomic tar-
get by using single-particle approach avoiding density
matrix formalism. For the calculation of polarized line
emission, the method based on a collisional-radiative
kinetic model of magnetic sublevel populations was re-
cently used by Hakel et al. [6]. Another method applied
as an alternative approach with respect to the usual den-

sity matrix formalism was based on the methods devel-
oped in the atomic theory [7–9]. In the latter method,
the probability or cross-section of the interaction was
expressed as multiple expansion over the multipoles
(irreducible tensors) of the state of all particles tak-
ing part in the process both in initial and final states.
The extension of this method to the multi-step pro-
cesses was presented in [10]. The ionization of polar-
ized atoms by polarized electrons was investigated by
Kupliauskienė and Glemža [11] with the help of meth-
ods of the theory of an atom [9] in distorted wave ap-
proximation. In the case of ionization of atoms by fast
non-polarized electrons a simpler approach like plane
wave Born approximation (PWBA) can be applied [12]
to describe the angular distribution and spin polariza-
tion of a slower emitted electron from polarized and
non-polarized atom as well as the alignment of ionized
atoms.

Auger decay following the photoionization of po-
larized atoms was investigated in [13, 14]. The inves-
tigations of Auger decay following the ionization of
atoms by electrons are not numerous. Angular distri-
bution and polarization of Auger electrons from non-
polarized atoms ionized by non-polarized electrons was
discussed by Blum et al. [15]. Numerical results for the
anisotrophy parameters were presented for cases where
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the final ion had a non-vanishing total angular momen-
tum. In the case of ionization of non-polarized atoms
by non-polarized fast electrons, the expressions for the
study of angular correlations between Auger and one
of the emitted electrons were obtained by Berezhko et
al. [16] by using density matrix approach.

The main task of the present work was the deriva-
tion of a general expression for differential cross-
section describing Auger decay following the ioniza-
tion of polarized atoms by polarized electrons in non-
relativistic approximation, the special cases of which

were suitable for the interpretation of the experimen-
tal results. The next section of the present work
is devoted to obtaining the general expression. Its
special cases are presented in Section 3. The in-
equality fine structure splitting À line width À
hyperfine structure splitting is also assumed. It us-
sually holds for the case of inner shell ionization of
atoms. Then the ion formed can be specified by the to-
tal angular momentum J of electronic shells. The mod-
ifications enabling one to take into account hyperfine
structure splitting can be easily made [8, 9].

2. General expression

In two-step approximation, the expression of the fourfold differential cross-section describing Auger decay
following the ionization of polarized atoms by polarized electrons

e−(p0m0) + A(α0J0M0) → A+(α1J1M1) + e−(p1m1) + e−(p2m2)

→ A2+(α2J2M2) + e−(p1m1) + e−(p2m2) + e−(pAmA) (1)

can be written in the form of expansion over multipoles of the non-registered intermediate state of an ion
A+(α1J1M1) by using the method proposed in [10] as follows:

d4σ(α0J0M0p0m0 → α1J1p1m1p2m2 → α2J2M2pAmA)

dε2dΩ1dΩ2dΩA

=
∑

K1N1

d3σK1N1
(α0J0M0p0m0 → α1J1p2m2p1m1)

dε2dΩ1dΩ2

dWA
K1N1

(α1J1 → α2J2M2pAmA)

dΩA
. (2)

In (1), αi indicates the configuration and other quantum numbers, Ji is the total angular momentum, and Mi is
its projection onto the chosen direction, for the atoms (ions) in the initial (i = 0), intermediate (i = 1), and final
(i = 2) states; pi, mi, and dΩi describe the momentum of an electron, its projection onto the chosen direction,
and scattering angle, respectively, for the projectile (i = 0), scattered (i = 1), emitted (i = 2), and Auger (i = A)
electrons, ε2 is the energy of emitted electron (p2 = (2ε2)

1/2 in atomic units).
The expression for the first term in (2) can be obtained from Eq. (13) of [11] by applying the procedure described

in [9, 10] and it is as follows:

d3σK1N1
(α0J0M0p0m0 → α1J1p2m2p1m1)

dε2dΩ1dΩ2
= C2(4π)3/2[2K1 + 1]1/2

×
∑

K,K0,K′

0
,Kλ0,Ks0,K′,

K′

1
,K′

2
,Kλ1,Ks1,Kλ2,Ks2

Bion(K0, K
′

0, K, Kλ0, Ks0, K1, K
′, Kλ1, Ks1, K

′

1, Kλ2, Ks2, K
′

2)

×
∑

N,N0,N ′

0
,Nλ0,Ns0,N ′,

N ′

1
,N ′

2
,Nλ1,Ns1,Nλ2,Ns2

[

Kλ0 Ks0 K ′

0

Nλ0 Ns0 N ′

0

] [

K0 K ′

0 K
N0 N ′

0 N

] [

K1 K ′ K
N1 N ′ N

] [

K ′

2 K ′

1 K ′

N ′

2 N ′

1 N ′

] [

Kλ1 Ks1 K ′

1

Nλ1 Ns1 N ′

1

] [

Kλ2 Ks2 K ′

2

Nλ2 Ns2 N ′

2

]

×Y ∗

Kλ0Nλ0
(p̂0) YKλ1Nλ1

(p̂1) YKλ2Nλ2
(p̂2)

×T ∗K0

N0
(J0, J0, M0|Ĵ1) T ∗Ks0

Ns0
(s, s, m0|ŝ) TKs1

Ns1
(s, s, m1|ŝ) TKs2

Ns2
(s, s, m2|ŝ) . (3)
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Here

C2 =
2p1p2

π2p0
, TK

N (J, J, M |Ĵ) = (−1)J−M
[

4π

2J + 1

]1/2 [ J J K
M −M 0

]

YKN (Ĵ) ,

the hat denotes the polar and azimuthal angles of the orientation with respect to the chosen z axis, and

Bion(K0, K
′

0, K, Kλ0, Ks0, K1, K
′, Kλ1, Ks1, K

′

1, Kλ2, Ks2, K
′

2)

=
∑

λ0,λ′

0
,λ1,λ′

1
,λ2,λ′

2
,j0,j′

0
,

j1,j′

1
,j2,j′

2
,J,J ′,j,j′

(2J + 1)(2J ′ + 1)(2s + 1)(−1)λ′

0
+λ′

1
+λ′

2

[

λ0 λ′

0 Kλ0

0 0 0

] [

λ1 λ′

1 Kλ1

0 0 0

] [

λ2 λ′

2 Kλ2

0 0 0

]

×〈α1J1, ε2λ2(j2)ε1λ1(j1)(j)J ||V ||α0J0, ε0λ0(j0)J〉 〈α1J1, ε2λ
′

2(j
′

2)ε1λ
′

1(j
′

1)(j
′)J ′||V ||α0J0, ε0λ

′

0(j
′

0)J
′〉∗

×
[

(2s + 1)(2λ0 + 1)(2λ′

0 + 1)(2λ1 + 1)(2λ′

1 + 1)(2λ2 + 1)(2λ′

2 + 1)(2j0 + 1)(2j′0 + 1)(2j1 + 1)(2j′1 + 1)

×(2j2 + 1)(2j′2 + 1)(2j + 1)(2j ′ + 1)(2J0 + 1)(2J1 + 1)(2K ′

0 + 1)(2K ′

1 + 1)(2K ′ + 1)(2K ′

2 + 1)
]1/2

×







J0 K0 J0

j′0 K ′

0 j0

J ′ K J













λ′

0 Kλ0 λ0

s Ks0 s
j′0 K ′

0 j0













J1 K1 J1

j′ K ′ j
J ′ K J













λ′

1 Kλ1 λ1

s Ks1 s
j′1 K ′

1 j1













λ′

2 Kλ2 λ2

s Ks2 s
j′2 K ′

2 j2













j′2 K ′

2 j2

j′1 K ′

1 j1

j′ K ′ j







. (4)

In (4), V marks the operator of the electrostatic interaction between atomic and projectile electrons. The reduced
matrix element in (4) consists of the direct and exchange terms where the order of the angular momenta of partial
waves in each term is different. The recoupling of these angular momenta was applied in order to save the possibility
to use the same formula for the kinematic part in the general expression (4). Then a more complicated expression
for the reduced matrix element of the electrostatic interaction is obtained:

〈α1J1, ε2λ2(j2)ε1λ1(j1)(j
′)J ||V ||α0J0, ε0λ0(j0)J〉 = [α0L0|α1(L1)lL0][α0S0|α1(S1)sS0]

×[(2L0 + 1)(2S0 + 1)(2J0 + 1)(2J1 + 1)(2j0 + 1)(2j1 + 1)(2j2 + 1)(2j + 1)]1/2

×2(2l + 1)(2λ1 + 1)
∑

j′,k,ks,k′′

(2j′ + 1)(2k′′ + 1)(−1)j′+j0+j1+j2+j+J1+J

×







L1 S1 J1

l s j′

L0 S0 J0













λ0 s j0

k ks k′′

λ1 s j1













λ2 s j2

k ks k′′

l s j′







{

J0 j0 J
j J1 j′

}{

j2 j1 j
j0 j′ k′′

}

[

(l||C(k)||λ2)(λ1||C(k)||λ0)

×Rk(nlε2λ2, ε1λ1ε0λ0)δ(ks, 0) +
∑

k′

{

λ0 k λ1

l k′ λ2

}

(l||C(k′)||λ1)(λ2||C(k′)||λ0) Rk′(nlε1λ1, ε2λ2ε0λ0)

]

. (5)

Here [α0L0|α1(L1)lL0] and [α0S0|α1(S1)sS0] are recoupling matrices which represent the contribution from the
part of wave functions described by the configuration, other quantum numbers, and the total orbital and spin angular
momenta of an atom.

The second term in (2) has the following expression [13, 14]:

dWA
K1N1

(α1J1 → α2J2M2pAmA)

dΩA
=

∑

K′

A
,K2,KλA,KsA,

N ′

A
,N2,NλA,NsA

Aa(K1, K2, KλA, KsA, K ′

A) ×
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×
[

KλA KsA K ′

A

NλA NsA N ′

A

] [

K2 K ′

A K1

N2 N ′

A N1

]

TK2

N2
(J2, J2, M2|Ĵ2) TKsA

NsA
(sA, sA, mA|ŝA)

√
4π YKλANλA

(θA, φA) , (6)

Aa(K1, K2, KλA, KsA, K ′

A) =
1

2

∑

λA,jA,λ′

A
,j′

A

〈α2J2ελA(jA)J1||V ||α1J1〉〈α2J2ελ
′

A(j′A)J1||V ||α1J1〉∗

×
[

(2λA + 1)(2λ′

A + 1)(2J1 + 1)(2jA + 1)(2j′A + 1)(2J2 + 1)(2s + 1)(2K ′

A + 1)
]1/2

×







J2 j′A J1

K2 K ′

A K1

J2 jA J1













λ′

A s j′A
KλA KsA K ′

A

λA s jA







(−1)λ′

A

[

λA λ′

A KλA

0 0 0

]

. (7)

Here V is the operator of the electrostatic interaction between Auger electron and electrons in the ion A2+.
The expressions (2), (3), and (6) represent the most general case of the cross-section describing the polarization

of all particles participating in the process (1) and the angular distributions as well as angular correlations of all
three electrons in the final state. These general expressions can be used to derive the expressions applicable for the
specific experimental conditions with smaller number of polarization states specified. To obtain the special cases,
one needs to integrate over the angles of one or both escaping and Auger electrons and to sum over the magnetic
components of some angular momenta. The following summation and integration formulae from [8] make this easy
to do:

∑

M

TK
N (J, J, M |Ĵ) = δ(K, 0) δ(N, 0) , (8)

∫ π

0

∫ 2π

0
YKN (θ, φ) sin θ dθ dφ =

√
4π δ(K, 0) δ(N, 0) . (9)

Some more simple examples are presented in the work as demonstrations. They cover the most frequently
measured set of characteristics and used experimental geometries.

3. Special cases

3.1. Total cross-section for the Auger decay following the ionization of non-polarized atoms by non-polarized
electrons

The total cross-section describing the Auger decay following the ionization of non-polarized atoms by non-
polarized electrons can be obtained from the general expression (2) by summation over the magnetic components
of the particles in the final state and averaging over them in the initial state as well as integration over the angles of
scattered, emitted, and Auger electrons. The result of these procedures can be written as follows:

dσ(α0J0ε0 → α1J1 → α2J2ε2εA)

dε2
=

1

2(2J0 + 1)

×
∑

M0,m0,M1,m1,M2,m2,mA

∫

dΩ1dΩ2dΩA
d4σ(α0J0M0p0m0 → α1J1p2m2p1m1 → α2J2M2pAmA)

dε2dΩ1dΩ2dΩA

= WA(α1J1 → α2J2)
dσ(α0J0ε0 → α1J1ε2)

dε2
. (10)

Here ε0, ε2, and εA are the energies (related to momentum as ε = p2/2) of the projectile, emitted, and Auger
electrons, respectively. The energy of the scattered electron ε1 can be obtained from the energy conservation
ε1 = ε0 − ε2 − ∆E, where ∆E is the ionization energy of an atom.
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In (10), the first term is the autoionization probability in atomic units defined as

WA(α1J1 → α2J2) = 2π
∑

λA,jA

|〈α2J2εAλA(jA)J1||V ||α1J1〉|2 . (11)

The second term in (10) is the differential electron-impact ionization cross-section

dσ(α0J0ε0 → α1J1ε2)

dε2
=

8

ε0(2J0 + 1)
Bion(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , (12)

where

Bion(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) =

∑

λ0,λ1,λ2,j0,j1,j2,j,J

(2J + 1)〈α1J1, ε2λ2(j2)ε1λ1(j1)j, J ||V ||α0J0, ε0λ0(j0)J〉2 . (13)

The expression for the total ionization cross-section can be obtained by the integration of (12) over the energies
of emitted electrons ε2 and is as follows:

σ(α0J0ε0 → α1J1) =
8

ε0(2J0 + 1)

∫

dε2 Bion(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) . (14)

3.2. Angular distribution of Auger electrons following the ionization of non-polarized atoms by non-polarized
electrons

The parameters describing the asymmetry of angular distribution of Auger electrons following the ionization
of non-polarized atoms by non-polarized electrons can be obtained from the general expression (2) by summation
over the magnetic components of particles in the final state and averaging over them in the initial state, as well as
integration over the angles of scattered and emitted electrons. The differential cross-section for the asymmetry of
angular distribution of Auger electrons is as follows:

dσ(α0J0ε0 → α1J1 → α2J2pA)

dΩA
=

1

2(2J0 + 1)

×
∑

M0,m0,M1,m1,M2,m2,mA

∫

dε2dΩ1dΩ2
d4σ(α0J0M0p0m0 → α1J1p2m2p1m1 → α2J2M2pAmA)

dε2dΩ1dΩ2dεA

= σ(α0J0ε0 → α1J1 → α2J2)

[

1 +
∑

K>0

βKPK(cos θ)

]

. (15)

Here the angle θ is measured from the direction of the projectile electron, PK(cos θ) is the Legendre polynomial,
σ(α0J0ε0 → α1J1 → α2J2) is the total cross-section of the process (1), i. e. the product of the Auger probability
(11) and the total ionization cross-section (14):

σ(α0J0ε0 → α1J1 → α2J2) = σ(α0J0ε0 → α1J1) WA(α1J1 → α2J2) , (16)

and

βK = AKαa
K (17)

is the asymmetry parameter of the angular distribution of Auger electrons. In (17), AK is the alignment parameter
of atoms ionized by electron impact. It has the following expression:

AK =
(2K + 1)

∫

dε2Bion(0, K, K, K, 0, K, 0, 0, 0, 0, 0, 0, 0)
∫

dε2Bion(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
. (18)
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The second term on the right-hand side in (17) describes the asymmetry in the angular distribution of Auger elec-
trons from an ionized atom,

αa
K =

(2K + 1)Aa(K, 0, K, 0, K)

Aa(0, 0, 0, 0, 0)
. (19)

The maximum value of K is determined by the values of total angular momentum J1 of the intermediate state of
an ion and orbital momentum of the emitted Auger electron Kmax = 2 min(J1, λA). K assumes only even values
as the parity is conserved in the Auger decay.

3.3. Angular correlations between Auger and escaping electrons following the ionization of non-polarized atoms
by non-polarized electrons

The study of the angular distribution of reaction products by the coincidence method enables one to obtain
complex amplitudes of different magnetic sublevels of a system, i. e. it yields more fundamental and more compre-
hensive information than can be extracted from measurements of the total and even the differential cross-section.
The angular correlations between Auger and one of the escaping electrons is measured keeping fixed the direction
of one of these electrons and changing the direction of the other. The cross-section of the processes (1) should
contain the angles of both electrons. It can be derived from (2) by summation over magnetic quantum numbers of
all angular momenta, averaging over the initial states, and integration over the angles of the scattered electron:

d3σ(α0J0ε0 → α1J1p2 → α2J2pA)

dε2dΩ2dΩA
=

1

2(2J0 + 1)

×
∑

M0,m0,m1,M2,m2,mA

∫

dΩ1
d4σ(α0J0M0p0m0 → α1J1p2m2p1m1 → α2J2M2pAmA)

dε2dΩ1dΩ2

=
∑

K1,N1

d2σK1N1
(α0J0p0 → α1J1p2)

dε2dΩ2

dWA
K1,N1

(α1J1 → α2J2pA)

dΩA
. (20)

Here

d2σK1N1
(α0J0p0 → α1J1p2)

dε2dΩ2
=

(4π)2C2

2(2J0 + 1)
[2K1 + 1]1/2

∑

Kλ0,Kλ2

B1(K1, Kλ0, Kλ2)

×
∑

Nλ0,Nλ2

[

K1 Kλ2 Kλ0

N1 Nλ2 Nλ0

]

Y ∗

Kλ0Nλ0
(p̂0) YKλ2Nλ2

(p̂2) , (21)

B1(K1, Kλ0, Kλ2) = Bion(0, Kλ0, Kλ0, Kλ0, 0, K1, Kλ2, 0, 0, 0, Kλ2, 0, Kλ2) . (22)

The expression (21) becomes simpler when the direction of the projectile electron coincides with the laboratory
z axis. Then Nλ0 = 0, N1 = Nλ2, and

d2σK1N1
(α0J0p0 → α1J1p2)

dε2dΩ2
=

(4π)3/2C2

2(2J0 + 1)

∑

Kλ0,Kλ2

[(2K1 + 1)(2Kλ0 + 1)]1/2
[

K1 Kλ2 Kλ0

N1 −N1 0

]

×B1(K1, Kλ0, Kλ2) YKλ2−N1
(p̂2) . (23)

The differential Auger probability in (20) has the following expression:

dWA
K1N1

(α1J1 → α2J2pA)

dΩA
= Aa(K1, 0, K1, 0, K1)

√
4π YK1N1

(θA, φA) . (24)
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The expression (20) can be written in the form similar to that by Berezhko et al. [16] and more convenient for
analysis of specific coinsidence experiments:

d3σ(α0J0ε0 → α1J1p2 → α2J2pA)

dε2dΩ2dΩA
=

1

4π

dσ(α0J0ε0 → α1J1 → α2J2)

dε2

×


1 +
∑

K1

αa
K1

∑

N1

AK1N1
(θ2, φ2)

[

4π

2K1 + 1

]1/2

YK1N1
(θA, φA)



 . (25)

Here

AK1N1
(θ2, φ2) =

∑

Kλ0,Kλ2

(2K1 + 1)[2Kλ0 + 1]1/2B1(K1, Kλ0, Kλ2)

[

K1 Kλ2 Kλ0

N1 −N1 0

]

YKλ2−N1
(θ2, φ2)

B1(0, 0, 0)
(26)

is the alignment parameter of the ionized atom depending on the angles θ2, φ2 of the emitted electron. The relation

AK1N1
(θ2, φ2) = (−1)K1−N1AK1−N1

(θ2, φ2)

reduces the number of independent tensors AK1N1
(θ2, φ2).

3.4. Magnetic dichroism in the angular distribution of Auger electrons following the ionization of polarized atoms
by non-polarized electrons

Magnetic dichroism is known as the dependence of the intensity of Auger electrons or fluorescence radiation
following excitation, ionization, or photoionization of atoms on the direction of the initial polarization of atoms.
It provides information about the dynamics of the Auger process complementary to that obtained from the spec-
tra of energy and angular distributions of Auger electrons. In the case of the ionization of polarized atoms by
non-polarized electrons, the cross-section for the process (1) suitable to describe the magnetic dichroism can be
readily obtained by performing summation of the general expression (2) over the magnetic components of the non-
registered angular momenta M2, m1, m2, mA, averaging over m0, and integration over the angles of the scattered
and emitted electrons:

dσ(α0J0M0ε0 → α1J1ε2 → α2J2pA)

dε2dΩA
=

1

2

∑

m0,m1,M2,m2,mA

∫

dΩ1dΩ2
d4σ(α0J0M0p0m0 → α1J1p2m2p1m1 → α2J2M2pAmA)

dε2dΩ1dΩ2dε2

=
∑

K1,N1

dσK1N1
(α0J0M0p0 → α1J1ε2)

dε2

dWA
K1N1

(α1J1 → α2J2pA)

dΩA
. (27)

Here

dσK1N1
(α0J0M0p0 → α1J1ε2)

dε2
=

C2

2
[(4π)5(2K1 + 1)]1/2

∑

K0,Kλ0,N0,Nλ0

[

K0 Kλ0 K1

N0 Nλ0 N1

]

×B2(K0, K1, Kλ1) Y ∗

Kλ0Nλ0
(p̂0) T ∗K0

N0
(J0, J0, M0|Ĵ0) , (28)

where

B2(K0, K1, Kλ1) = Bion(K0, Kλ0, K1, Kλ0, 0, K1, 0, 0, 0, 0, 0, 0, 0) . (29)
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The choice of laboratory z axis along the direction of
the projectile electron makes the expression (28) sim-
pler, as Nλ0 = 0 and N0 = N1:

dσK1N1
(α0J0M0ε0 → α1J1ε2)

dε2
= (4π)2

×
∑

K0,N1

C2

2
[(2K1 + 1)(2Kλ0 + 1)]1/2

[

K0 Kλ0 K1

N1 0 N1

]

×B2(K0, K1, Kλ0)(−1)J0−M0

[

4π

2J0 + 1

]1/2

×
[

J0 J0 K0

M0 −M0 0

]

Y ∗

K0N1
(Ĵ0) . (30)

The magnetic dichroism equals to the difference be-
tween the cross-sections (30) measured for the opposite
directions of the total angular momentum J0. To obtain
its expression one needs to multiply (30) by 2 and to
take into account only the terms with odd values of K0.
The odd values of K0 give contribution due to the prop-
erties of the Clebsch–Gordan coefficients [17] in (30).

3.5. Magnetic dichroism in the total cross-section of
Auger electrons following the ionization of
polarized atoms by non-polarized electrons

The magnetic dichroism reveals itself in the total
cross-section of Auger electrons following the ioniza-
tion of polarized atoms by non-polarized electrons as
well. The expression for this cross-section can be ob-
tained by integrating (30) over the angles of the Auger
electrons and it is as follows:

dσ(α0J0M0ε0 → α1J1 → α2J2)

dε2
= (31)

WA(α1J1 → α2J2)
∑

K0

dσK0
(α0J0M0ε0 → α1J1)

dε2
.

Here

dσK0
(α0J0M0ε0 → α1J1)

dε2
=

C2

2

[

2K0 + 1

2J0 + 1

]1/2

×(2K0 + 1)B2(K0, 0, K0)(−1)J0−M0

[

J0 J0 K0

M0 −M0 0

]

PK0
(cos θ0) , (32)

where θ0 is the angle between the orientation of the axis
to which the projection of the total angular momentum

of an atom J0 is defined and the direction of the projec-
tile electron.

In this case, the ratio

∆ =
σ(J0M0) − σ(J0 −M0)

σ(J0M0) + σ(J0 −M0)
=

{

∑

K0=odd

(2K0 + 1)3/2B2(K0, 0, K0)(−1)J0−M0

×
[

J0 J0 K0

M0 −M0 0

]

PK0
(cos θ0)

}

×
{

∑

K0=even

(2K0 + 1)3/2B2(K0, 0, K0)(−1)J0−M0

×
[

J0 J0 K0

M0 −M0 0

]

PK0
(cos θ0)

}−1

(33)

is independent of the parameters of the Auger decay.
In (33), the definition σ(J0M0) = dσ(α0J0M0ε0 →
α1J1 → α2J2)/dε2 is used.

In the case of the orientation of J0 along the direc-
tion of incoming electron, θ0 is 0, and so

∆ = (34)

∑

K0=odd
(2K0 + 1)3/2 B2(K0, 0, K0)

[

J0 J0 K0

J0 −J0 0

]

∑

K0=even
(2K0 + 1)3/2 B2(K0, 0, K0)

[

J0 J0 K0

J0 −J0 0

] ,

where K0 ≤ 2J0. Thus, the ratio ∆ can be non-zero in
the case of J0 = 1/2:

∆ =
(2J0 + 1)1/2 3

√
3 B2(1, 0, 1)√

2 B2(0, 0, 0)
. (35)

For J0 = 1,

∆ =
(2J0 + 1)1/2 3

√
3 B2(1, 0, 1)√

2 [B2(0, 0, 0) + 5
√

5 (2J0 + 1) B2(2, 0, 2)]
.

(36)

4. Concluding remarks

The general expression for the cross-section descib-
ing the Auger decay following the ionization of po-
larized atoms by polarized electrons is obtained when
the two-step approximation can be applied. The ex-
pression describes the polarization states and angular
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distributions of all particles both in the initial and fi-
nal states. Some special cases suitable for the spe-
cific conditions are studied as simpler cases of the gen-
eral expression. These cases are: the angular distri-
bution of Auger electrons following the ionization of
non-polarized atoms by non-polarized electrons, angu-
lar correlations between Auger and one of the emit-
ted electrons following the ionization of non-polarized
atoms by non-polarized electrons, magnetic dichroism
in the angular distribution, and the total cross-section
of Auger electrons following the ionization of polar-
ized atoms by non-polarized electrons. For other ex-
perimental conditions, the expressions can be easily ob-
tained by using the general expression as well.
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AUGER ELEKTRONŲ IŠ POLIARIZUOTAIS ELEKTRONAIS JONIZUOTŲ POLIARIZUOTŲ
ATOMŲ SAVYBĖS
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Santrauka
Atomų vidinių sluoksnių jonizacija elektronais yra galingas

instrumentas mikropasaulio sandarai ir jame egzistuojančioms
sąveikoms tirti. Daug svarbios informacijos galima gauti nagri-
nėjant poliarizuotas būsenas, kurioms ir yra skirtas šis darbas. Nag-
rinėjamas dviejų tarpsnių vyksmas, kai elektronais jonizuoti atomai
išspinduliuoja Auger elektroną. Gautos patį bendriausią visų dale-
lių poliarizacijos atvejį aprašančios formulės. Jos yra sudėtingos
ir atitinka šiuolaikinėmis sąlygomis sunkiai realizuojamą eksperi-
mentą. Pastarajame dažniausiai ne visos dalelės registruojamos, to-
dėl matuojamos sąsajos yra kur kas paprastesnės. Dėl šios priežas-
ties minėtosioms formulėms suteiktas pavidalas, kuriame realūs at-

vejai aprašomi tomis pačiomis išraiškomis, prilyginus nuliui ran-
gus, atitinkančius neregistruojamas daleles. Toks pavidalas yra pa-
togus, nes leidžia panaudoti tą pačią programą skirtingiems vyks-
mams nagrinėti. Darbe aptarti keli tokio nagrinėjimo pavyzdžiai.

Kai visi vyksmo dalyviai yra nepoliarizuoti, turime išskirtinį at-
vejį. Tuomet formulėse visi poliarizaciją nusakantys rangai lygūs
nuliui ir daliniai skerspjūviai sutampa su pilnutiniais. Be to, aptarta
kampinė koreliacija tarp pradinio ir Auger bei tarp atplėštojo ir Au-
ger elektronų. Taip pat nagrinėjamas Auger elektronų kampinio
pasiskirstymo magnetinis dichroizmas bei pats magnetinis dichro-
izmas, kuris aprašomas suintegravus ankstesniojo atvejo formules
pagal Auger elektrono skriejimo kryptis.


