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1. Introduction

Invented more than 30 years ago, the MIT bag model
[1–3] still serves as an useful method which yields rea-
sonable predictions for a variety of hadronic proper-
ties (at least for the ground states). Various aspects
of the bag model are discussed in a number of review
papers [4–6]. Originally the model was designed for
the ultrarelativistic case of the light quarks and was
rather successful in describing the low-lying hadron
spectrum. Although the first straightforward appli-
cation of the model to calculate the spectrum of the
hadrons containing heavy quarks was of very limited
success because of evident disagreement between cal-
culated and observed data, later on the bag model was
adjusted to incorporate the heavy quarks. It was rec-
ognized that the reconciliation between the bag model
and the heavy quark physics could be achieved by tak-
ing into account the so-called c. m. m. (centre of mass
motion) correction. For the hadrons containing only
one heavy quark there exists an approximate solution
of the c. m. m. problem – one can simply associate the
centre of mass with the heavy quark and fix it [7, 8].
For the baryons containing two heavy quarks one can
proceed in a similar way assuming the heavy quarks to
form the doubly-heavy diquark and then put this object
at the centre of the bag [9]. The advantage of such ap-
proach is the simple and clear physical picture, but the
price for this simplicity is three more ore less related
bag models: one for the hadrons consisting of light
quarks (in this case the role of c. m. m. correction is
partly played by the so-called zero-point energy), one

for hadrons containing single heavy quark, and one
for the baryons containing two heavy quarks. More-
over, there remains the case of the baryons consisting of
three heavy quarks which needs special treatment. An-
other rather popular method to deal with c. m. m. prob-
lem is to employ a wave-packet ansatz [10]. Both ap-
proaches give only approximate solutions to the prob-
lem. However, the second seems to be more universal
and could be preferable in the case one tries to obtain
the unified description of the light and heavy hadrons.
The c. m. m. corrections is not all the story, and in or-
der to have plausible unified description of light and
heavy hadrons (mesons and baryons) in the framework
of the bag model some other QCD inspired improve-
ments such as running coupling constant and running
quark masses are necessary [11].

When the number of quark flavours increases we are
confronted with additional problem which needs some
clarification. For the spin-1/2 baryons containing three
quarks of different flavours there exist two states with
the same spin and parity. We can construct the set of
orthogonal wave functions by assuming the first two
quarks to be in the relative spin-0 or spin-1 state, re-
spectively. In general case the physical states would be
the linear combinations of these mathematical states

|B〉=C1 |(q1q2)
0q3〉 + C2 |(q1q2)

1q3〉 ,

|B〉′ =C2 |(q1q2)
0q3〉 − C1 |(q1q2)

1q3〉 . (1)

The mixing mechanism depends on the model and
approximation used. In the MIT bag it would be the
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hyperfine colour-magnetic interaction. The same is true
in the ordinary constituent quark model as well as in al-
most all variants of the potential model. Some estimate
of the state mixing is also possible in the heavy quark
effective theory [12].

Because of the ambiguity in how the quarks are
to be ordered in the mathematical wave functions
|(q1q2)

Sq3〉 the expansion in Eqs. (1) is not unique. If
one does not want to bother about the quark ordering,
one can simply diagonalize the 2nd order interaction
energy matrix [13]. Since such a procedure has not
become a common practice, the very natural question
arises, how some authors have managed to avoid this
state mixing problem. The answer was given a long
time ago in the Ref. [14]. The authors of that paper
have shown that for the interaction energies with quark
mass dependence ∼1/(mamb) an optimal quark order-
ing scheme could be found. The prescription is to pick
the closest in mass quarks as the first two in the wave
function |(q1q2)

Sq3〉. Then the mixing of the states
with different S values is small, and the effect of this
mixing on baryon masses is negligible. Strictly speak-
ing, such mixing exists even in the light baryon sector
between the wave functions from which the physical
states Σ0 and Λ0 are constructed. Because of the ap-
proximate isotopic symmetry this mixing is small, and
if we are interested only in the calculation of baryon
masses, we can safely ignore this effect. The explicit
calculations with the isospin-symmetry violating terms
taken into account show that the mixing is indeed small
[15], as expected. In the sector of charmed baryons
there are also rather strong indications that the mixing
between Ξc and Ξ′

c baryons is small, with negligible
shifts in the masses of these hadrons again [16].

And what could be said about the wave function
mixing in the framework of the bag model? Of course,
we expect that all reliable models of hadron structure
yield similar results. However, we cannot apply the
results of Ref. [14] directly because the dependence
of the interaction energy on quark masses in the bag
model is somewhat more complicated. For example,
the values of light quark masses in the bag model could
be set to zero, while in the nonrelativistic models these
values approach one-third of the nucleon mass. A sim-
ple way to make the things clear is to perform direct
calculations in the bag model taking the mixing inter-
action into account. This means that in the calculations
of baryon energy the off-diagonal matrix elements of
the colour-magnetic interaction should be included.

In this paper we are going to examine the mixing of
the ground state baryon wave functions in the frame-

work of the modified MIT bag model. In the next sec-
tion we give a short description of the model we are
dealing with. The concluding section contains the re-
sults of our investigation accompanied by the discus-
sion and some additional remarks on the validity of ap-
proaches with and without mixing.

2. The model

The ground state energy of the hadron defined in the
static spherical cavity approximation is given by

E =
4π

3
BR3 +

∑

i

niεi + ∆E , (2)

where B is the bag constant, R is the bag radius,
εi is eigenenergy of the ith quark in the cavity, and
∆E stands for the interaction energy. ∆E consists of
colour-electric and colour-magnetic parts as described,
for example, in Ref. [11] in detail. For our purpose
the most important is the contribution of the colour-
magnetic interaction, which in the case of the baryons
containing three distinct quarks can be written as

∆Em = αc(R)
∑

j>i

aijMij(mi,mj , R) . (3)

Here αc(R) is the running strong coupling constant.
The functionMij(mi,mj , R) depends on quark masses
and hadron bag radius and it can be calculated explic-
itly. Parameters aij specify the spin dependence of the
interaction energy between quarks qi and qj . They are
proportional to the matrix elements 〈(q1q2)

S1q3|(σi ·
σj)|(q1q2)

S2q3〉, where σi are appropriate spin gener-
ators. These coefficients can be calculated straightfor-
wardly using algebraic technique, as described in the
Ref. [17], and the transformation of the basis [18]

|(q1q2)
J12q3〉

J =
∑

J13

(−1)j2+j3+J12+J13

×
√

(2J12 + 1) (2J13 + 1) (4)

×

{
j2 j1 J12

j3 J J13

}
|(q1q3)

J13q2〉
J ,

where necessary. The results are presented in Ta-
ble 1, where for simplicity the abbreviations |J12〉 =
|(q1q2)

J12q3〉 are used.
The relation between the calculated bag-model en-

ergy E and the hadron mass M is given by

E =

∫
d3sΦ2

P (s)
√
M2 + s2 , (5)
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Table 1. Parameters which specify the colour-magnetic interaction
energy of baryons consisting of three distinct quarks.

a12 a13 a23

〈0|aij |0〉 −3
〈1|aij |1〉 1 −2 −2

〈0|aij |1〉
√

3 −
√

3

where ΦP (s) is a Gauss profile

ΦP (s) =

(
3

2πP 2

)3/4

exp

(
−

3s2

4P 2

)
. (6)

The effective momentum P specifies the momentum
distribution and is defined as

P 2 = γ
∑

i

nip
2
i . (7)

Here pi are the momenta of the quarks. The c. m. m. pa-
rameter γ is to be determined in the fitting procedure.
For the baryons containing b-quarks the relation (5)
gives practically the same results as the familiar Ein-
stein relation [19]

M2 = E2 − P 2 . (8)

In the presence of b-quarks we prefer to use this simple
relation instead of rather cumbersome procedure based
on Eq. (5). For the running coupling constant αc(R)
and running quark mass mf (R) we use the following
expressions:

αc(R) =
2π

9 ln(A+R0/R)
, (9)

mf (R) = m̃f + αc(R) · δf , (10)

where R0 is the scale parameter analogous to QCD
constant Λ. Parameter A helps us to avoid divergences
when R → R0. For each quark flavour we have two
free parameters m̃f and δf to be adjusted.

Let us summarize our zoo of model parameters.
These are the bag constant B, the c. m. m. parameter
γ which determines the strength of the c. m. m. cor-
rections, two parameters (A and R0) from the running
coupling constant parametrization, and finally six pa-
rameters (m̃s, δs, m̃c, δc, m̃b, δb) necessary to define
the running quark mass functions mf (R). The light
(up and down) quarks are taken to be massless. To fix
the parameters B, γ, A, and R0 the experimentally ob-
served masses of the light hadrons (N , ∆, π, and the
average mass of the ω − ρ system) were chosen. To
fix the mass function parameters m̃f , δf for each quark
flavour we have employed the masses of correspond-
ing lightest vector mesons (φ, J/ψ, Υ) and the mass

values of the lightest baryons Λf containing the quark
qf of the corresponding flavour. We employ the same
fitting procedure as in our previous work [11], and the
values of the parameters to be used as the input in the
bag model calculations are: B = 7.597 · 10−4 GeV4,
R0 = 2.543 GeV−1, A = 1.070, γ = 1.958, m̃s =
0.161 GeV, δs = 0.156 GeV, m̃c = 1.458 GeV,
δc = 0.112 GeV, m̃b = 4.793 GeV, δb = 0.061 GeV.
The parameters B, R0, A, γ, m̃s, δs are the same as
in Ref. [11]. The numerical values of the remaining
four parameters (m̃c, δc, m̃b, δb) differ slightly from
the corresponding values presented in [11] because in
the present work we have used new more accurate val-
ues of Λc (2.286 GeV) [20] and Λb (5.620 GeV) [21]
masses.

3. Results and discussion

Let us proceed to the discussion of our main point of
concern – the wave function mixing of heavy baryons
in the bag model calculations. The ground state
baryons we are interested in are Ξc, Ξ′

c, Ξ∗

c ; Ξb, Ξ′

b, Ξ∗

b ;
Ξbc, Ξ′

bc, Ξ∗

bc; and Ωbc, Ω′

bc, Ω∗

bc. The mixing is pos-
sible only between the spin-1/2 states (Ξc and Ξ′

c, for
example). In order to calculate the masses of all these
baryons we use the bag model parameters listed at the
end of the preceding section. For the spin-3/2 states
denoted as | . . .〉∗ the calculation procedure is exactly
the same as adopted in the paper [11]. We minimize
the energy EB∗ of each such baryon as a function of
the bag radius R and then apply Eq. (5) (for Ξ∗

c) or
Eq. (8) (for Ξ∗

b , Ξ∗

bc, and Ω∗

bc) to determine the corre-
sponding baryon masses. For the spin-1/2 states | . . .〉
and | . . .〉′ the procedure differs only in the choice of
the energy function to be minimized. In this case we
use the trace of the energy matrix EB + EB′ which
remains invariant under state mixing. Then we calcu-
late the diagonal and off-diagonal matrix elements of
the interaction energy, diagonalize the energy matrix,
and use Eq. (5) or (8) again to determine the masses
of the physical baryons. To gain some insight how
the things look like we present some intermediate re-
sults of calculations in the Tables 2, 3. In the first
two rows of these tables we give the c. m. m. uncor-
rected energy values E(1) and E(0) corresponding to
the mathematical wave functions in which the first two
quarks in the spin coupling scheme (q1q2)

Sq3 are in the
spin-1 and spin-0 states. The last two rows contain the
squared wave function expansion coefficients obtained
after matrix diagonalization. The symbols b, c, s denote
the bottom, charmed, and strange quarks, respectively,
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Table 2. Dependence of the c. m. m. uncorrected energies (in GeV)
before the matrix diagonalization on the arangement of quarks for
the Ξc, Ξ′

c (columns 2–4) and Ξb, Ξ′

b (columns 5–7) baryons. The
last two rows contain the squared expansion coefficients C2

1 , C2

2 of
the wave functions obtained after matrix diagonalization.

(q1q2)q3 (us)c (uc)s (sc)u (us)b (ub)s (sb)u

E(1) 2.886 2.840 2.831 6.086 6.013 6.010
E(0) 2.818 2.865 2.874 5.987 6.059 6.062
C2

1 0.9950 0.3139 0.1912 0.9997 0.2656 0.2347
C2

2 0.0050 0.6861 0.8088 0.0003 0.7344 0.7653

Table 3. Dependence of the c. m. m. uncorrected energies (in GeV)
before the matrix diagonalization on the arangement of quarks for
the Ξbc, Ξ′

bc (columns 2–4) and Ωbc, Ω′

bc (columns 5–7) baryons.
The last two rows contain the squared expansion coefficients C2

1 ,
C2

2 of the wave functions obtained after matrix diagonalization.

(q1q2)q3 (uc)b (ub)c (cb)u (sc)b (sb)c (cb)s

E(1) 7.078 7.050 7.041 7.247 7.224 7.217
E(0) 7.035 7.062 7.072 7.212 7.235 7.241
C2

1 0.9833 0.3693 0.1474 0.9872 0.3538 0.1591
C2

2 0.0167 0.6307 0.8526 0.0128 0.6462 0.8409

and for the sake of simplicity the symbol u is used for
both light (up or down) quarks.

The inspection of results in Tables 2 and 3 shows a
striking dependence of the calculated energies on the
quark ordering. As one can see, the wave function
with two first quarks in the relative spin-0 state has the
lowermost energy only when the heaviest quark (e. g.,
b-quark) is picked up as the third in the corresponding
spin coupling scheme (q1q2)

Sq3. This is the only case
when the traditional prescription

| . . .〉 = |(q1q2)
0q3〉 , | . . .〉′ = |(q1q2)

1q3〉 (11)

could be maintained, because the energy matrix diago-
nalization leads to negligible changes of the initial en-
ergy values. The direct calculations show that even in
the most problematic case of the Ξbc − Ξ′

bc system the
difference between energy values before and after di-
agonalization does not exceed 1 MeV and is obviously
much smaller than the systematic uncertainties of the
model. So, if one is interested only in the baryon mass
spectra, one can adopt the prescription (11), construct
the optimal basis by arranging the quarks in increas-
ing order of their masses, and never bother about the
diagonalization of the energy matrix anymore. At this
point a remark is necessary. One must be very cau-
tious when dealing with other baryon parameters (such
as magnetic moments, for example). As it was shown
in Ref. [14], the wave function mixing may change the
values of the calculated magnetic moments substan-
tially even when the optimal basis is used. Although

Table 4. Masses of Ξc, Ξ′

c, Ξ∗

c and Ξb, Ξ′

b, Ξ∗

b baryons (in GeV).
The row denoted as Bag contains the results obtained in our work.
The row Exp contains averaged over the isodoublet experimental

energy values.

Particle Ξc Ξ′

c Ξ∗

c Ξb Ξ′

b Ξ∗

b

Bag 2.468 2.546 2.638 5.809 5.911 5.944
[23] 2.481 2.578 2.654 5.812 5.937 5.963
[25] 2.474 2.578 2.655 5.808 5.946 5.975
[26, 27] 2.468 2.582 2.651 5.810 5.955 5.984
Exp 2.469 2.577 2.646 – – –

Table 5. Masses of Ξbc, Ξ′

bc, Ξ∗

bc and Ωbc, Ω′

bc, Ω∗

bc baryons (in
GeV). The row denoted as Bag contains the results obtained in our

work.

Particle Ξbc Ξ′

bc Ξ∗

bc Ωbc Ω′

bc Ω∗

bc

Bag 6.846 6.891 6.919 6.999 7.036 7.063
[22] 6.82 6.85 6.90 6.93 6.97 7.00
[24] 6.933 6.963 6.980 7.088 7.116 7.130
[26] 7.029 7.053 7.083 7.126 7.148 7.165
[9] 6.838 7.028 6.989 6.941 7.116 7.077

this problem is beyond the scope of the present paper,
it is worth attention, and we are going to return to this
question in the future.

Before going to the concluding remarks we want to
compare the masses of baryons calculated in our work
with the results obtained in other models and experi-
mental data where available. We have chosen for the
sake of comparison the baryon mass estimates in non-
relativistic [22] and relativistic [23, 24] potential mod-
els obtained in the quark–diquark approximation, the
estimates obtained in the quark–diquark approximation
of the bag model [9], the calculations in the simpli-
fied variational approach [25], and predictions provided
using various sum rules based partially on the heavy
quark symmetry considerations [26, 27]. The experi-
mental values are taken from the Particle Data Tables
[28]. The data for the baryons of ΞQ type are presented
in Table 4 and for the ΞQ1Q2

, ΩQ1Q2
type baryons in

Table 5.
From Table 4 it is seen that for the baryons contain-

ing one heavy quark all approaches give rather similar
qualitative picture. Inspection of the ΞQ − Ξ∗

Q hyper-
fine mass splitting indicates that in our version of the
bag model the interaction energies for these baryons
could be slightly underestimated. Comparison with ex-
periment also shows that all approaches give reason-
able results. One could even insist that owing to the
approximate nature of the models the agreement with
experiment (though not excellent) is surprisingly good.
Such success gives us some confidence that we are on
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the right path in understanding the properties of heavy
baryons.

For the baryons with two heavy quarks the situation
is somewhat different. As seen from Table 5, all but
one approaches give similar qualitative pictures of the
baryon spectra again. A striking exception is the re-
sults obtained in the paper [9] (the reversed order of the
Ξ′

bc, Ξ∗

bc and Ω′

bc, Ω∗

bc states). The bag model results
for the ground state baryon masses calculated in our
work are laid out somewhat above the estimates [22]
obtained in the nonrelativistic potential model based
on the quark–diquark approximation. Relativistic ap-
proach [24] gives similar mass spectrum as ours but
shifted approximately 70 MeV upwards. The predic-
tions based on the sum rules [26] are higher than our
estimates by approximately 170 MeV and 110 MeV for
the Ξbc and Ωbc families respectively. The difference
between the baryon spectrum obtained in the paper [9]
and the others is of qualitative character. It could look
strange, but it is the direct consequence of the attempts
to incorporate the mixing effects for the ground state
baryons in the quark–diquark approximation to the bag
model. We already know that in the ordinary approach
the wave function mixing can play an important role
in the calculations of the baryon mass spectra. How-
ever, in general, we cannot draw a direct link between
the quark ordering in the spin coupling scheme and the
corresponding diquark structure. Nevertheless, some
correspondence between the two pictures is expected.
For example, in the quark–diquark approximation to
the potential model the physical Ξ′

bc and Ω′

bc states are
those with scalar cb diquark [24], as could be expected
from the analogy with the ordinary approach (see the
4th and 7th columns of Table 3). In the usual approach
the interaction of the system consisting of two quarks
with the third one is provided by the interaction of its
individual constituents. The mixing of the wave func-
tions is possible only when the interaction between the
first and the third quarks is of different strength as com-
pared with the interaction between the second and the
third (as the quark becomes heavier its hyperfine inter-
action with other quarks decreases). When the mixing
is present the correct mass splitting is achieved only
after the diagonalization of the energy matrix. On the
other hand, in the quark–diquark approximation some
information about the initial structure of the diquark
is lost, and, as a rule, the mixing of the ground state
functions is absent [23]. Maybe some remnant of the
mixing interaction of the ground states could exist, but
practically it seems to be unnecessary. Since the baryon
masses predicted in the paper [9] differ radically from

the predictions obtained in the bag model with the state
mixing effects taken into account (this work) and from
the results obtained in the quark–diquark approxima-
tions to the potential model, it seems that the mixing
effects in the work [9] have been heavily overestimated.
Of course, in the calculation of energies of the excited
baryons one is confronted with the mixing of various
states, and in consistent calculations [22, 24] these mix-
ing effects are taken into account.

As regards the results obtained in our work, first of
all, we conclude that, as expected, the bag model shares
many features of ordinary quark model. The main
aim of this paper was to examine the heavy baryon
ground state wave function mixing due to the colour-
magnetic interaction in the framework of the modified
bag model. We have found that the main features of
the mixing interaction in the bag model are the same
as in the ordinary nonrelativistic quark model. So, we
can conclude that fully relativistic treatment of the light
quarks in the bag has only minor influence on the state
mixing properties. For the baryons consisting of three
quarks of different flavour we cannot in general ig-
nore the wave function mixing induced by the hyperfine
colour-magnetic interaction. It can even cause sizable
changes of the calculated hadronic properties. On the
other hand, the widely accepted optimal basis can be
built up by simply choosing the heaviest quark as the
third one in the corresponding spin coupling scheme.
The matrix of the interaction energy in this basis is
approximately diagonal, and therefore the mixing ef-
fects in the baryon mass (energy) calculations can be
neglected. If for any reason other than optimal basis is
used, even in the baryon mass calculations the mixing
effects must be taken into account.
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SUNKIŲJŲ BARIONŲ MAIŠYMASIS MAIŠŲ (BAG) MODELIO SKAIČIAVIMUOSE

A. Bernotas, V. Šimonis

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka
Barionų, sudarytų iš trijų skirtingų aromatų kvarkų, pagrin-

dinių būsenų papildomai klasifikacijai gali būti naudojami tarpi-
niai kvarkų poros sukiniai, tačiau dėl sukinio-sukinio tipo stip-
riosios sąveikos šie tarpiniai sukininiai momentai ne visada yra
„geri“ kvantiniai skaičiai. „Fizikinės“ tokių dalelių (pavyzdžiui,
Ξc ir Ξ′

c) banginės funkcijos bendru atveju yra pradinių „matema-
tinių“ funkcijų, charakterizuojamų tarpiniais sukiniais, superpozi-
cija. Skaičiuojant tokių dalelių energiją, reikia atsižvelgti ir į nedia-
gonaliųjų matricinių elementų įtaką. Yra žinoma, kad kai kuriais
atvejais, sudarant barionų bangines funkcijas nereliatyvistiniame,
potencialiniame modelyje, galima taip parinkti kvarkų sukinių su-
rišimo schemą (pradžioje surišant lengvesnių kvarkų sukinius, o po

to prie jų pridedant trečiojo, paties sunkiausio kvarko sukinį), kad
tarpiniai sukiniai išliktų santykinai „gerais“ kvantiniais skaičiais.
Siekiant išsiaiškinti, ar ir MIT maišų modelyje galioja panašūs
dėsningumai, buvo atlikti nuodugnūs skaičiavimai, parenkant visas
įmanomas kvarkų sukinių surišimo schemas ir atsižvelgiant į nedia-
gonalius matricinius elementus. Paaiškėjo, kad čia taip pat egzis-
tuoja optimali sukinių surišimo banginėje funkcijoje schema (tokia
pat kaip ir potencialiniame modelyje), o kitose schemose pastebi-
mas stiprus pradinių banginių funkcijų susimaišymas. Neblogas
turimų eksperimentinių duomenų sutapimas su modelio rezultatais
rodo, kad maišų modelis, įskaičius jame hipersmulkiąją spalvinę
magnetinę sąveiką, gali būti naudojamas barionų nežinomų masių
įverčiams.


