
Lithuanian Journal of Physics, Vol. 48, No. 2, pp. 121–126 (2008)

ANALYTIC SOLUTION FOR THE REDUCED CROSS-SECTION AND
ITS DERIVATIVES AT LOW x BASED ON GLUON AND STRUCTURE

FUNCTION EXPONENTS

G.R. Boroun
Physics Department, Razi University, Kermanshah 67149, Iran

E-mail: boroun@razi.ac.ir, grboroun@gmail.com

Received 29 December 2007; revised 2 March 2008; accepted 9 June 2008

Analytic solutions for the reduced cross-section and its derivatives with respect to lny are presented at the low-x limit.
The DGLAP evolution equations for singlet and gluon structure function based on Regge-like behaviour of the gluon distri-
bution and the structure function at this limit are solved. We calculated numerically and compared our results with the HERA
experiment H1 data at small x. All results can be consistently described within the framework of perturbative QCD.
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1. Introduction

Deep-inelastic lepton–nucleon scattering (DIS) has
been pivotal in the development of the understanding
of strong interaction dynamics. Also, at small values
of the Bjorken scaling variable x it is interesting for
understanding the inner structure of hadrons. In the
one-photon exchange approximation the neutral cur-
rent double differential cross-section, d2σ/(dx dQ2) ,
is given by the expression

d2σ

dx dQ2
=

2πα2Y+

Q4x
σr , (1)

where the reduced cross-section is defined as

σr ≡ F2(x, Q2) −
y2

Y+

FL(x, Q2) , (2)

with Y+ = 1 + (1 − y)2. Here Q2 is the squared
four-momentum transfer, x denotes the Bjorken scal-
ing variable, y = Q2/(sx) is the inelasticity, with s the
electron–proton centre of mass energy squared, and α
is the fine structure constant [1–5].

The reduced cross-section depends on the two inde-
pendent structure functions F2(x, Q2) and FL(x, Q2).
At low x, the structure functions’ behaviour is well un-
derstood in terms of Regge-like behaviour [6]. Recent
studies [7, 8] have shown that it is possible to use Regge

theory for the Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi (DGLAP) [9] evolution. Inserting this behaviour
into the parton-model calculation of the structure func-
tions gives us the small x behaviour Fi=S,g ∼ xλi=S,g

as x→0, where λS and λg are the gluon and struc-
ture function exponents. Our goal in this work is to
present an approximate analytical solution for the re-
duced cross-section and its derivatives. In order to
do this, the DGLAP evolution equations are calculated
neglecting the quark distribution. The approach, us-
ing the Regge and the Regge-like behaviour for singlet
and gluon distribution respectively, has been applied in
this paper. The formulation of the problem in next-to-
leading order DGLAP (NLO-DGLAP) evolution equa-
tions for the calculation of the reduced cross-section
and its derivatives through λg and λS exponents and
numerical results are given in Section 2. Finally, Sec-
tion 3 is devoted to calculation and results.

2. Formalism

In perturbative QCD, the longitudinal structure func-
tion FL(x, Q2) is proportional to αs. At low x we
use the fact that the non-singlet contribution F NS

2 can
be ignored safely. Now we can write the longitudinal
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structure function by an integral over the quark and
gluon distributions as [1, 4]

FL(x, Q2) =

1
∫

x

dy

y
Kq

(

x

y
, Q2

)

F2(y, Q2)

+

1
∫

x

dy

y
KG

(

x

y
, Q2

)

G(y, Q2) (3)

with

F2 = x
nf
∑

i=1

e2
i

[

q(x) + q(x)
]

, (4)

where the structure function is given by a sum of quark
and anti-quark momentum distribution functions. The
gluon momentum density is given by G(x, Q2) =
xg(x, Q2). Here ei are the quark charges and nf = 4
the number of flavours, and the kernels are

Kq(x, Q2) =
αs

4π
4CF x2 (5)

and

KG(x, Q2) =
αs

4π
[8x2(1 − x)]

nf
∑

i=1

e2
i , (6)

where CF is the colour Casimir operator. With substi-
tuting the splitting functions, FL is obtained:

FL(x, Q2) =
4αs

3π

1
∫

x

dy

y

(

x

y

)2

F2(y, Q2) (7)

+
20αs

9π

1
∫

x

dy

y

(

x

y

)2(

1 −
x

y

)

G(y, Q2) .

The Regge-like behaviour of the gluon distribution
function and the structure function is that the functions
increase as x decreases. This behaviour at small x
corresponds to a rising longitudinal structure function.
Now let us use this behaviour, as the x dependence of
this at low x is consistent with a power law for fixed
Q2 [10–15], as can be shown:

dF2(x, Q2)

d lnx
= −λS F2(x, Q2) (8)

and

dG(x, Q2)

d lnx
= −λg G(x, Q2) , (9)

where λS and λg are the respective exponents. These
functions are determined by the form fi=F2,G =

Ci=F2,G x−λS,g where the coefficients C are approxi-
mately independent of Q2 with a constant mean value
[16]. In a series of papers [16, 17] we have seen, λS,g

rises approximately linearly with lnQ2. This depen-
dence can been represented as λS,g = bS,gln(Q2/Λ2).
The coefficients bS,g are constant [16]. We are con-
sidering the similar scale Q2/Q2

0, so we can write
the variation of F2(x, Q2) and G(x, Q2) through the
same functions. To begin with, the evolution of
∂F2(x, Q2)/∂lnQ2 and ∂G(x, Q2)/∂lnQ2 at fixed x
values is obtained over all Q2 values, as we have found:

∂F2(x, Q2)

∂ lnQ2
= −bS lnx F2(x, Q2) (10)

and

∂G(x, Q2)

∂ lnQ2
= −bg lnx G(x, Q2) . (11)

Therefore the gluon distribution and the structure
function evolutions from the initial conditions are
found as

F2(x, Q2) = F2(x, Q2
0)

(

Q2
0

Q2

)bSlnx

(12)

and

G(x, Q2) = G(x, Q2
0)

(

Q2
0

Q2

)bglnx

. (13)

On the basis of the DGLAP evolution equations it is
known that the structure function and the gluon distri-
bution function exponents can be evaluated. This fact
makes it possible to relate the gluon and the structure
function exponents to the initial exponents as has been
suggested previously [16], i. e.

ln
λg0

λg − xλg

t
∫

t0

x−λg

(

3α

π
−

61α2

9π2

)

dt

=

t
∫

t0

(

3α

π
−

61α2

9π2

)

1 − xλg

λg

dt , (14)

for the gluon distribution exponent evolution and

λSF2(x, t) − λS0
F2(x, t0) =

0.555

π

t
∫

t0

αs G(x, t)

[

2λg

3 +λg

(1 − x3+λg)

+
λg

1 +λg

(1 − x1+λg) −
2λg

2 +λg

(1 − x2+λg) +
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+ 2x3+λg + x1+λg − 2x2+λg

]

dt

+
1.852

π2

t
∫

t0

α2
s G(x, t) dt , (15)

for the singlet structure function exponent evolution.
The initial conditions are

λS0
=

∂lnF2(x, t0)

∂lnx−1
(16)

and

λg0
=

∂lnG(x, t0)

∂lnx−1
. (17)

In these equations t0 = ln(Q2
0/Λ

2) is the starting scale,
where Q2

0 corresponds to the square of the input mo-
mentum and Λ is the QCD cutoff parameter. These
equations can be determined through λg and λS for our
aims, respectively [16].

On the other hand, based on the Regge-like be-
haviour of the gluon distribution and the structure func-
tion, Eq. (7) can be solved. Integrating it we have

FL(x, Q2) = η F2(x, Q2) + ζ G(x, Q2) , (18)

where

η =
4αs

3π

1 − x2+λS

(2 +λS)
(19)

and

ζ =
20αs

9π

(2 +λg)x
3+λg − (3 +λg)x

2+λg + 1

(2 +λg)(3 +λg)
. (20)

Substituting Eqs. (12) and (13) into Eq. (18) and then
into Eq. (2) for each constant value of x gives us a re-
lation of the reduced cross-section σr with λS and λg

exponents. On this basis we find that

σr(x, Q2) = F2(x, Q2
0)

(

Q2
0

Q2

)bSlnx (

1 −
y2

Y+

η

)

−
y2

Y+

ζ G(x, Q2
0)

(

Q2
0

Q2

)bglnx

, (21)

where F2(x, Q2
0) and G(x, Q2

0) are the input struc-
ture function and gluon distribution function. In or-
der to estimate its derivatives, we take the deriva-
tives of Eq.(21) with respect to lny for each value of
constant Q2 and x, (i. e. (dσr/d lny)Q2=constant and
(dσr/d lny)x=constant). So we obtain the following re-
sults:

dσr

d lny

∣

∣

∣

∣

Q2=const

=

−
∂F2(x, Q2

0)

∂lnx

(

Q2
0

Q2

)bSlnx(

1 − η
y2

Y+

)

− F2(x, Q2
0)

(

Q2
0

Q2

)bSlnx λS

ln(Q2/Λ2)
ln

Q2
0

Q2

(

1−η
y2

Y+

)

− F2(x, Q2
0)

(

Q2
0

Q2

)bSlnx(

2y2 2−y

Y 2
+

η+
y2

Y+

4αs

3π
x2+λS

)

+
∂G(x, Q2

0)

∂lnx

(

Q2
0

Q2

)bglnx y2

Y+

ζ

+ G(x, Q2
0)

(

Q2
0

Q2

)bglnx λg

ln(Q2/Λ2)
ln

Q2
0

Q2

y2

Y+

ζ

− G(x, Q2
0)

(

Q2
0

Q2

)bglnx

×
[

2y2 2 − y

Y 2
+

ζ −
y2

Y+

20αs

9π
(x3+λg − x2+λg)

]

(22)

and

dσr

d lny

∣

∣

∣

∣

x=const

=

− F2(x, Q2
0)

(

Q2
0

Q2

)bSlnx{

λS

lnx

ln(Q2/Λ2)

(

1 −
y2

Y+

η

)

+ 2y2 2 − y

Y 2
+

η −
y2

Y+

4αs

3π

[

1 − x2+λS

(2 +λS)ln(Q2/Λ2)

+
λSlnx x2+λS

(2 +λS)ln(Q2/Λ2)
+

λS(1 − x2+λS)

(2 +λS)2ln(Q2/Λ2)

]}

+ G(x, Q2
0)

(

Q2
0

Q2

)bglnx{

λg
lnx

ln(Q2/Λ2)

y2

Y+

ζ

− 2y2 2 − y

Y 2
+

ζ −
y2

Y+

20αs

9π

[

(

− 2x3+λg + 3x2+λg − 1

+ (2 +λg)x
3+λgλglnx − (3 +λg)x

2+λgλglnx
)

×
[

(2 +λg)(3 +λg)ln(Q2/Λ2)
]

−1

−
(2 +λg)x

3+λg − (3 +λg)x
2+λg + 1

(2 +λg)2(3 +λg)ln(Q2/Λ2)
λg −
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−
(2 +λg)x

3+λg − (3 +λg)x
2+λg + 1

(2 +λg)(3 +λg)2ln(Q2/Λ2)
λg

]}

. (23)

Equations (21)–(23) are our main results. Therefore
the reduced cross-section and its derivatives with re-
spect to lny at x or Q2 constant based on λS and λg

exponents are determined.

3. Calculation and results

In this paper we employed the Regge-like behaviour
of structure function and gluon distribution to calculate
the reduced cross-section and its derivatives with re-
spect to lny at Q2 = 20 GeV2 and Q2 = 22.5 GeV2.
We have taken the exponents λS and λg for our calcu-
lation from Ref. [16]. In these calculations λS = 0.270
and λg = 0.370 at Q2 = 20 GeV2, also λS = 0.274 and
λg = 0.372 at Q2 = 22.5 GeV2, respectively. The same
analysis can be done for other Q2 values, too. In our
calculations, the value of Λ is as used in Ref. [13], i. e.,
Λ = 292 MeV. We have taken the parameters of the in-
put distributions xq(x) = aq xbq (1−x)cq [1+dq

√
x+

eq x] for xg(x, Q2
0), V (x, Q2

0), and A(x, Q2
0) at the ini-

tial scale Q2
0 = 4 GeV2 using H1 and BCDMS data for

Q2 À 3.5 GeV2 [17]. The parameterisations used are
summarized in Table 1. The initial proton structure

Table 1. Parameters of the input distributions for xg(x, Q2),
V (x, Q2), and A(x, Q2).

a b c d e

gluon 1.10 −0.247 17.5 −4.83 68.2

V 86.3 1.47 4.48 −2.12 1.60

A 0.229 −0.130 19.7 −3.82 29.8

function F2(x, Q2
0) is obtained from the decomposition

of the structure function into two independent combi-
nations of parton distribution functions V (x, Q2) and
A(x, Q2), according to

F2 =
1

3
x V +

11

9
x A . (24)

The results of the calculations are shown in Figs. 1–
3. In Fig. 1 a comparison is made between our ob-
tained values for the reduced cross-section and the H1
Collaboration [17] data, indicating the fact that the re-
duced cross-section σr can be determined with reason-
able precision. As can be seen, there is some rate of
increment as observed in the H1 data, but with a some-
what smaller rate. For Q2 constant, there is a crossover

Fig. 1. Determination of the reduced DIS scattering cross-section
(closed points). Triangles represent data from the H1 Collaboration
[17] with the total errors including the experimental and model un-

certainly of the QCD fit.

Fig. 2. Determination of the derivative dσr/d lny = −dσr/d lnx
at fixed Q2 (closed points). Triangles represent data from the H1

Collaboration [17] with the total error.

Fig. 3. Determination of the derivative dσr/d lny = +dσr/d lnQ2

at fixed x (closed points).
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point for both of the curves whose prediction is numer-
ically equal. The resulting y-derivatives of σr with re-
spect to lny at fixed Q2 are shown in comparison with
those extracted from H1 data [17] in Fig. 2. The error
bars in the H1 data [17] include the total errors. Fi-
nally, the data in Fig. 3 show derivative of the reduced
cross-section with respect to lny at x constant. We see
that there is good agreement between the two data sets,
leading us to conclude that we can obtain the reduced
cross-section and its derivative based on the gluon and
structure function exponents at all y values. The in-
crease rates are almost the same for all Q2 values but at
low x we see its increment rate is decreased. We expect
that NLO QCD calculations of the longitudinal struc-
ture function are more correct and its solutions will give
a better fit to global data and parameterizations at very
low x.

In conclusion, based upon the Regge-like behaviour
of the gluon and the structure function at low x, an ap-
proximate method for the calculation σr and its deriva-
tives with respect to lny is presented. In this method σr

and its derivatives with respect to lny for low x values
at Q2 constant using the DGLAP evolution equation
without knowledge of the longitudinal structure func-
tion FL(x, Q2) are determined. Careful investigation
of our results show a good agreement with the previ-
ous published data based on an “extrapolation method”
and a “derivative method”. There is however a region,
a Q2 interval, where the two regimes, Regge and per-
turbative QCD, are compatible. We have seen that we
can use a Regge-like theory which constrains the initial
parton densities at Q2 = Q2

0 and obtain the distribu-
tions at higher virtualities with the DGLAP evolution
equation. These comparisons indicate that the forms
of obtained reduced cross-section and its derivatives
are similar to those predicted from experimental data.
More corrections with NLO QCD calculations will be
needed to refine this observation at high y. To summa-
rize, we find that the model described in Eqs. (21)–(23),
together with the DGLAP evolution, provides a simple
and economic solution that could be useful for further
practical applications, for example in nuclear physics.
In addition, we can conclude that the initial input and
its evolution give a good fit to the experimental data in
range of the variables x and Q2.
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REDUKUOTOJO SKERSPJŪVIO IR JO IŠVESTINIŲ SPRENDINYS NEDIDELĖMS x VERTĖMS,
REMIANTIS GLIUONŲ IR SANDAROS FUNKCIJŲ EKSPONENTĖMIS
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Santrauka
Pateiktos analizinės redukuotojo skerspjūvio ir jo išvestinių

išraikos lny atžvilgiu, kai Bjorkeno parametras x yra mažas. Iš-
spręstos DGLAP evoliucinės lygtys singletinei ir gliuonų sandaros
funkcijai, grindžiamos Redže tipo gliuonų pasiskirstymo ir sanda-

ros funkcijos elgsena šioje riboje. Skaitmeniškai gauti rezultatai
palyginti su HERA bandymo H1 duomenimis, kai x maži. Visus
rezultatus galima nuosekliai aprašyti naudojant perturbacinę kvan-
tinę chromodinamiką.


