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Analysis of the multivariate data distributions can be helpful or directly applicable in pattern recognition tests. Estimate of
the volume of the critical region of overlapping distributions is essential in determination of the confidence level of classifica-
tion. Mathematical tools for analysis of the multivariate distributions (included probability, false positives and false negatives,
means for calculation of the critical region) are developed. Sum of the false negative and the false positive is found as a very
approximate characteristic of the total uncertainty of classification. The false negative probability is extremely distribution
coordinate dependent and analysis of the details of the overlapping distributions is needed to evaluate the real risk of misclas-
sification of samples. Application of the multivariate distributions to the regional classification of wine samples according to
the data of multielement analysis is presented as an example.
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1. Introduction

Variety of information presented as numerous data
form the basis of the modern decision making in de-
ciding or rejecting suggested hypothesis or selecting
between few of them. It is because and due to possi-
bility of generation of the large data sets by the mod-
ern measurement techniques. As an example, data on
composition of a lot of samples including somewhere
up to sixty chemical elements is usual in recent en-
vironmental and geochemistry research, food chem-
istry and food authenticity studies, clinical and foren-
sic toxicology. Even larger data sets are characteristic
of the data for multivariate calibration, ultraviolet, visi-
ble, infrared, and mass spectrometry, gene and time se-
ries studies. Various techniques, including dispersion
and correlation analyses, discriminant, factor, princi-
pal component, cluster, neural networks, and others [1]
are used for more concise presentation, analysis, and
interpretation of such data sets. Many aspects of the
methodology of the use of those and related techniques
were discussed in recent publications [1–6]

Naturally, in the classification or pattern recognition
matters, evaluation of the quality of classification is an
essential issue. In the present paper we show that anal-
ysis of the multivariate distributions of data or some

their derivatives, as principal components, for exam-
ple, can be helpful, or directly applicable for the pattern
recognition studies. A lot of tables and mathematical
expressions for analysis of the bivariate distributions
can be found, but very few data concern multivariate
distributions. Tables or convenient means for calcula-
tion of the probability density functions, α and β type
errors, evaluation of the critical region of the overlap-
ping distributions would be of interest. The aim of
the present paper is to aid development of such means
and application of the multivariate distributions in data
analysis. In some cases the results were found to be ex-
traordinary simple. Application of the results to classi-
fication of wine samples according to their country of
origin is presented as an illustration.

2. Multivariate normal distributions. Theoretical
treatment

The normal distribution characterizes the data where
many small, independent effects additively contribute
to each observation. The distribution is described by
two parameters: location (typically mean or “average”,
µ) and scale (standard deviation or “variability”, σ).
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The continuous probability density function (PDF) of
the normal distribution is the Gaussian

f(x; µ, σ) =
1

σ
√

2π
exp

[

− (x − µ)2

2σ2

]

, (1)

with σ > 0. About 68% of values of the normal distri-
bution are contained in the range of one standard devia-
tion from the peak. About 95% of the values are within
two standard deviations and about 99.7% are located
within three standard deviations from the mean. Pre-
cisely, the area under the curve between −nσ and nσ
is geometrical definition of the standard error function
erf(x) of real argument

P (|x| < nσ) = erf

(

n√
2

)

. (2)

In practice the range in which the distribution of
variables is being regarded is always limited. If, for
example, in “deciding whether or not a particular sam-
ple may be judged as likely to have been randomly
drawn from a certain population” [7] we restrict our-
selves to the range ±2σ (power of the test 0.95), the
probability of rejecting the null hypothesis that is actu-
ally true (false positive, α or type I error, or p level of
significance) is 0.05. If the distributions partially cross,
false negative error, or acceptance of the null hypothe-
sis while, in fact, the alternative hypothesis is true, is
possible. Naturally, no ambiguity arises if the critical
region, where the two distributions overlap, is small as
compared to the selected level of significance α. If the
critical region is comparable to α, then careful analy-
sis of the probability distributions inside the critical re-
gion is necessary. Many tables and procedures can be
found to help analysis of the univariate distributions. In
contrast, for the multivariate distributions direct calcu-
lations usually have to be performed. The probability
density function of the bivariate normal distribution is

f(x, y; µ, σ) =
1
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where σx and σy are the standard deviations of the x
and y values, ρ is the correlation coefficient.

The d-dimensional Gaussian (multivariate probabil-
ity distribution) function is defined as

f(~x; ~µ, σ) =
1

(2π)d/2
√

det σ

× exp
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− 1

2
(~x − ~µ)>σ−1 (~x − ~µ)
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, (4)

where > denotes transposition and −1 inverse opera-
tion, correspondingly. σ is a covariance matrix, with

σij = 〈(xi − µi)(xj − µj)〉 . (5)

Here the angle brackets denote expectation value of the
quantity inside:

µi = 〈xi〉 . (6)

Using Eq. (4) the probability density function of the
trivariate normal distribution takes the following ex-
plicit form:
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Here

ρt =−σ33σ
2

12 + 2σ13σ23σ12 − σ11σ
2

23 − σ2

13σ22

+ σ11σ22σ33 . (8)

Note that for bivariate distribution σ11 = σ2
1
, σ22 = σ2

2
,

and σ12 = ρσ1σ2. Some data for comparison of the
normal, bivariate, and trivariate probability distribu-
tions are presented in Table 1. Because volume of ellip-
soid is always less than volume of surrounding cuboid,
it follows that probability included in the ellipsoidal
volume within some standard deviation from the mean
is also always less than the normal distribution prob-
ability of the same interval raised to power of dimen-
sion of the space. In particular, the normal probability
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Table 1. Comparison of the included ellipsoidal probability of the
univariate (normal), bivariate, and trivariate distributions. The sec-
ond and the third entries of the univariate distribution column rep-
resent the first entry raised to the power of 2 and 3 correspondingly.

Range Normal, squared, cubed Bivariate Trivariate

0.5σ 0.3829, 0.1466, 0.0561 0.11750 0.03086
1.0σ 0.6827, 0.4661, 0.3182 0.39347 0.19875
1.5σ 0.8664, 0.7506, 0.6503 0.67534 0.47783
2.0σ 0.9545, 0.9111, 0.8696 0.86467 0.73854
2.5σ 0.9876, 0.9753, 0.9632 0.95607 0.89994
3.0σ 0.9973, 0.9946, 0.9919 0.98889 0.97071

squared is always slightly larger than elliptical bivariate
probability. The same is true for trivariate probability
(Table 1) when compared with the normal probability
raised to power of 3. The presented data for these dis-
tributions depend neither on the variables ratio nor on
the covariance matrix.

Included ellipsoidal probabilities of higher dimen-
sional multivariate distributions can be described by the
following simple formula:

P (d, |x| < nσ) = 1 − Γ(d
2
, n2

2
)

Γ(d
2
)

. (9)

Here d is the space dimension and Γ denotes the usual
gamma function:

Γ(z) =

∞
∫

0

tz−1e−tdt , Re(z) > 0 , (10)

Γ(z, z1) =

∞
∫

z1

tz−1e−tdt . (11)

From (9) it comes as a little surprise that ellipsoidal
probabilities in even-dimensional space can be ex-
pressed using the elementary functions only. For ex-
ample, for bivariate distribution (3) the included prob-
ability within 2σ variance interval is P (2, |x| < 2σ) =
1 − 1/e2. In odd-dimensional spaces this probability
includes single one-dimensional erf(z) function. For
example, for trivariate distribution the included prob-
ability for the same deviation is P (3, |x| < 2σ) =
−4/(

√
2πe2) + erf(

√
2). These can be easily checked

to have the same numerical values as presented in Ta-
ble 1. More results on exact expansion of (9) are pre-
sented in Appendix.

If two distributions overlap, the volume of the criti-
cal region can be found as an integral common to both
distributions. If some level of significance is accepted,
the range of the distribution is restricted by the corre-
sponding ellipsis and the critical region is part of the

overlapping distribution inside the ellipsis. Risk for the
corresponding false negative error must be accounted
for when the data inside the ellipsis are being regarded.

3. Analysis of the real distributions. Discussion

Characteristic examples of the bivariate and 3-di-
mensional data distributions are presented in Figs. 1
and 2 below. The data represent the problem of classi-
fication of wine samples measured in [8]. The absolute
concentrations of 19 elements, namely Li, B, Na, Mg,
Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr,
Ba in 102 wines from Bulgaria (5), Chile (25), France
(26), Hungary (7), Italy (6), Spain (28), California (5),
measured by double focusing sector field mass spec-
trometer Element2 were taken for the analysis below.
The number of the tested samples is given in paren-
theses. Tm was used as an internal standard. Relative
measurement uncertainty usually did not exceed 10%.
Step by step approach from all the samples to smaller
classes (see Fig. 1) was used for classification. The
Anova F-test was used to select the most informative
elements at each classification step and enabled reduc-
tion of noise. More details on the measurement proce-
dure can be found in [8]. In particular, elements Rb, Sr,
Li, and Zn had large F-ratio values and were most use-
ful for the current classification. Principal component
analysis (PCA) for the selected elements was used to
minimize correlations between measured data. Some-
times even one principal component was enough to dis-
tinguish between the two populations. Usually the first
principal component explained 40–80% (44% in Fig. 1
and 60% in Fig. 2) of the dispersion of the data, second
principal component 10–40% (33% in Fig. 1 and 25%
in Fig. 2), but sometimes the higher principal compo-
nents are important. For example, the 3rd principal
component explained 22.3% of the variance relative to
Fig. 1. The 3rd and 4th components (not shown) ex-
plain 11.0 and 3.7% of the variance relative to Fig. 2,
correspondingly.

Of course, it is not evident in advance that applica-
tion of the PCA will aid regional classification. The
main tendencies of data variation highlighted by the
principal components cannot be necessarily due to the
regional effects. Studies in [8], where comparison
of the data classification capabilities of the raw ele-
ment concentration data and the principal components
was undertaken, revealed that application of the PC in-
creased classification capabilities in comparison to the
raw data in the case under study. In addition, the results
of the PC distribution tests were in correspondence
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Fig. 1. Results of PCA analysis of concentrations of Sr, Rb, and Zn in wines from different countries. Square (cuboid) ¤ denotes samples
from Chile and California, triangle (tetrahedron) 4 is for wines from Spain, Bulgaria, and Hungary, and circle (sphere) © represents brands
from France and Italy. 3D ellipsoids are drawn at 95% confidence level. 2D ellipses are calculated in the same way using x−y projection

points.

with the normal distribution, although the power of the
test was not high because of the small data sets.

Two and three principal component scatters of all
the measured data for Sr, Rb, and Zn are presented in
Fig. 1. The points tend to group into 3 batches. The one
consists of samples from Spain, Bulgaria, and Hungary,
the other is formed by wines form Chile and Califor-
nia, and the last one is wines from France and Italy.
The mean values of the principal components for each
group and the corresponding covariance matrices of the
trivariate distribution are listed in Table 2. One could

notice appreciable correlation between principal com-
ponents within the groups while, from the very PC con-
cept, no correlation between the principal components
for the batch in general is possible. Specific rules of
data classification is the source of this correlation.

If, for example, 95% confidence level for classifi-
cation is accepted, the distributions partially overlap
(Fig. 1). It is to be noted that if we draw confidence
ellipsoids matching multivariate PDF parameters, then
these ellipsoids will not generally coincide with the
ellipsoids which include 95% of the data points. It
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Table 2. Principal components analysis of Rb, Sr, and Zn element concentration data in samples of wines from
Chile and California (¤), Spain, Bulgaria, and Hungary (4), and France and Italy (©).

Data 4 group ¤ group © group

Covariance matrix
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

PC1 0.0400 −0.0066 −0.0128 0.0237 0.0014 0.0076 0.0223 0.0031 0.0057
PC2 −0.0066 0.0383 0.0069 0.0014 0.0188 −0.0147 0.0031 0.0210 −0.0069
PC3 −0.0128 0.0069 0.0690 0.0076 −0.0147 0.0419 0.0057 −0.0069 0.0317

Mean
−0.264 −0.225 −0.0148 0.429 −0.107 −0.0008 −0.072 0.382 0.0193

is because ellipsoid constructed by descriptive statistic
methods ensures that the prescribed fraction of data (in
our case 95% of points) lie inside the locus of ellipsoid
without any explicit hypothesis about data distribution
probability function. Despite the fact that both ellip-
soids are centred on group mean value and their ori-
entations coincide (it is calculated using the same co-
variance matrix), lengths of major / semi-minor / minor
axes generally differ.

Detailed probability distribution analysis is needed
to decide how essential is the risk in classification and
must or may not the accepted confidence level be re-
duced. The natural expectation is that disposition of
more data should provide better separation of samples.
This is completely confirmed by calculations of the
bivariate probability function intersection integrals for
different groups of data presented in Table 3. The in-
tegrals represent the part of the interfering distribution
inside the 95% confidence level ellipse being regarded
and can be interpreted as the hypothesis false negative
error that the point in the intersection area belongs to
this group, while in reality it belongs to another one.
As follows from the table, classification of a sample
found inside the parameter region characteristic of the
4 group according to the two elements data (Sr, Rb)
is not possible, because overlapping of the other distri-
butions is very large. At the same time identification
of the samples from ¤ and © groups at least at confi-
dence level about 0.94 seems possible. Discrimination
is much better for the three elements (Sr, Rb, Zn) data
set (see Fig. 1 also). According to the integral charac-
teristics presented in Table 3, classification of all the
data at confidence level about 0.9 is possible. In reality
it is evident that at the crossing line of the two overlap-
ping distributions the probabilities to find a sample as
originating from any of the two distributions is equal,
while at the opposite side of the ellipse probability of
an error in classification is negligible. Sum of the two
false negatives ¤ and © relative to 4 could seem as
some integral characteristic of possible error, but it is

clear from Fig. 1 that either one or another is possible,
not both. In such a manner the integral characteristics
evaluate only the mean probability of classification of a
large number of samples. They account for the decreas-
ing character of the characteristic distributions but do
not correspond to the problem of classification of par-
ticular sample represented by particular data set.

As another example, it seems trivial that two batches
can be classified as separate if the variation of the de-
scribing parameters within the batches is small as com-
pared to the differences between the mean values. Nev-
ertheless, even if the centres of the distributions co-
incide but dispersions are very different, classification
can be possible. In Fig. 2 the PC analysis of concen-
trations of Sr, Rb, Zn, and Li in wines from Spain and
France is presented. The overlap of the two batches at
95% confidence level is negligible. The data for Bor-
deaux wines (France) are marked by triangles (4) in
the figure. Naturally, they are found inside the ellipsis
characteristic of the wines from France. Nevertheless,
it follows from calculation of the bivariate PDF cross-
section integral (at 95% confidence level) that proba-
bility of the wines from other regions of France to have
characteristics similar to those from Bordeaux is com-
paratively small. The integral of probability density
function of the data of wines from France (with Bor-
deaux district excluded) over 95% confidence ellipse
area (denoted by solid thick line in Fig. 2) of Bordeaux
wines is 13.5%. This can be easily seen from very dif-
ferent shapes of PDF characteristic of wines from Bor-
deaux and France in general (Fig. 2). If Bordeaux dis-
trict is included in PDF parameters estimation, the cal-
culated integral value increases to 14.0%. If instead of
two principal components as shown in Fig. 2 we take
three largest principal components, the trivariate PDF
integral (false negative from other regions of France
relative to Bordeaux) reduces to 7.2%. If all four PCA
components are taken into account, the integral further
reduces to below 2%, illustrating the high potential of
application of the higher dimensions.
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Table 3. The bivariate probability function intersection integrals for different
groups of data. False Negative (FN) is part of the interfering distribution inside
the 2D 95% confidence level ellipse being regarded. The bivariate distributions
were calculated for the PC of the two elements (Sr, Rb) and three elements (Sr,
Rb, Zn) data sets for wines from Chile and California (¤), Spain, Bulgaria, and
Hungary (4), and France and Italy (©). The third PC component of the three-

element case is omitted as it has not improved the classification.

Sr, Rb PCA; FN from Sr, Rb, Zn PCA; FN from
Null hypothesis 4 ¤ © 4 ¤ ©

4 – 23.4% 59.2% – 3.80% 8.15%
¤ 2.23% – 0 2.01% – 0
© 6.24% 0 – 4.31% 0 –

Fig. 2. Results of PCA analysis of concentrations of Sr, Rb, Zn, and Li chemical elements in wine from Spain (¤) and France. Two largest
PCA components, which explain correspondingly 60.3 and 25.0% of variance, are shown. The remaining PCA components explain 11.0 and
3.7% of data correspondingly. Bordeaux wines are marked by 4 and brands from remaining France districts are represented by circles ©.
Ellipsoids in the x−y plane (solid lines) are drawn at 95% confidence level. Isocontours of bivariate PDF surfaces denote ellipsoids of

included probability.

As limited number of samples is tested, deviation of
the determined standard deviation value from the true
one can be significant. The Student’s t coefficient can
be included into calculation of the axes of the ellipses to
account for the uncertainty. Multivariate Student’s dis-
tributions ought to be used instead of the normal ones in
the case (see [9] also). Naturally, generic principles of
calculations discussed above and presented in the Ap-
pendix remain the same.

4. Conclusions

In such a manner we find that analysis of the mul-
tivariate distributions is an effective, transparent, and
convenient tool to evaluate the accuracy of classifica-
tion and the main sources of uncertainty. Mathematical
means for application of the method are developed and
presented. Possible role of the higher dimensions (up
to the forth) is demonstrated. It is stressed that the de-
tailed topography of the distributions must be analysed
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to evaluate the real risk of classification in any par-
ticular case under analysis. The selected confidence
level for discrimination between the batches and the
corresponding d-dimensional space included character-
ize only the probability not accounted for in the anal-
ysis, false positive, that decreases if the coverage fac-
tor is increased. The volume of the critical region is
only a very rough characteristic of the overlapping dis-
tributions. The false negative probability distribution is
not only distance, but especially orientation, or coordi-
nate, dependent. The probability of misclassification is
essentially different near the critical region and at the
opposite side of the distribution. Thus analysis of the
distributions provides detailed information on the un-
certainty of classification. More detailed description of
the mathematical tools used for the analysis of distri-
butions is included in the Appendix.

Extension of the applicability of the integral classifi-
cation probabilities to data analysis could be desirable.
As one of the approaches, it could be done by exten-
sion of applicability of the false positive, or α error,
concept. Ellipses or higher dimension pictures of the
space that includes the selected probability are in cor-
respondence with this concept. Overlapping with other
distributions indicates overestimation of the confidence
level. The space being regarded ought to be restricted
in a manner to exclude the regions where the false neg-
ative probability density is not negligible (e. g., three
or ten times less) as compared to the lowest probability
density of the null hypothesis distribution in any region
being accounted for (naturally, it is lowest at the bor-
der of the selected false positive level space). Such a
line or surfaces ought to exclude the regions where the
false negative probability is significant. Then new in-
tegral false positive value must be found as the integral
probability inside this space. It would be applicable to
the parameter region found from the distribution anal-
ysis.

Thus the sum of the false negative and the false pos-
itive is only an approximate characteristic of the total
uncertainty of classification. The false negative prob-
ability is extremely distribution coordinate dependent
and analysis of the details of the overlapping distribu-
tions is needed to evaluate the real risk of classification
of the real samples. We hope that the material con-
cerning the multivariate normal distributions presented
above and in the Appendix can be helpful for such anal-
ysis.

5. Appendix

Computer algebra system Mathematica [10] was
used both for symbolic and numeric calculations. Be-
sides general system kernel functionality a number of
functions from MultivariateStatistic.m and ANOVA.m
packages appeared to be very useful.

Mathematica’s impressive symbolic definite integra-
tion capabilities were used to derive formula (9). The
results were checked by numerical integration proce-
dure for a number of selected values. Expansions of (9)
for particular d and σ values, part of which are used in
Table 4, were calculated with the system built-in com-
mand FunctionExpand[ ]. The expansion results again
were checked by high precision numerical integration
routines.

Numerical integration of the multivariate PDFs over
(generally overlapping) d-dimensional ellipsoidal re-
gions was realized with the additional Boolean help
function in the integrand. This Boole function was
defined to have value 1 if the point under integration
belonged to the interior of both ellipsoidal shapes and
0 otherwise. Because most of the integrands included
fast falling functions, numerical integration limits had
to be carefully adjusted to ensure reliable best precision
results.

Full calculation details are available as Mathematica
notebook with accompanying full measured concentra-
tion data text file, available for download from http://
mokslasplius.lt / eksperimentai / files / eksperimentai /
Notebooks / MultivariateQuantification.tar.gz .
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Table 4. Probability included in multivariate PDF. Space dimensions d and deviations σ.
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DAUGIAMAČIŲ GAUSO SKIRSTINIŲ ANALIZĖS TAIKYMAS BANDINIŲ KLASIFIKACIJOS
KOKYBEI VERTINTI

P. Serapinas, Ž. Ežerinskis, A. Acus

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka
Duomenų klasifikacijos pasikliautinumo lygį lemia skirstinių

persiklojimo laipsnis. Yra daug būdų ir patogių priemonių vien-
mačiams skirstiniams analizuoti, tačiau daugiamačių skirstinių
analizė retai taikoma. Straipsnyje pateikiamos lentelės ir būdai
daugiamačių Gauso skirstinių įskaitytajai tikimybei, kritinei sričiai,
klaidingosioms teigiamosioms ir klaidingosioms neigiamosioms ti-
kimybėms skaičiuoti. Parodoma, kad klaidingosios teigiamosios ir

klaidingosios neigiamosios tikimybių suma yra tik labai apytikrė
klasifikacijos pasikliautinumo charakteristika. Klaidingoji neigia-
moji tikimybė yra lokalizuota skirstinyje, ir jos vaidmuo duomenų
klasifikavimui iš esmės priklauso nuo to, kiek konkretūs duomenys
yra toli nuo tos srities. Pateikiamas pavyzdys, kaip daugiamačių
skirstinių analizė panaudojama vyno bandinių regioninei klasifika-
cijai pagal spektrometrinius cheminės analizės duomenis.


