
Lithuanian Journal of Physics, Vol. 51, No. 1, pp. 5–18 (2011)

AN EXPLICIT BASIS OF LOWERING OPERATORS FOR
IRREDUCIBLE REPRESENTATIONS OF UNITARY GROUPS

D.S. Sage and L. Smolinsky
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

E-mail: sage@math.lsu.edu, smolinsk@math.lsu.edu

Received 2 July 2010; revised 13 December 2010; accepted 15 December 2010

The representation theory of the unitary groups is of fundamental significance in many areas of physics and chemistry.
In order to label states in a physical system with unitary symmetry, it is necessary to have explicit bases for the irreducible
representations. One systematic way of obtaining bases is to generalize the ladder operator approach to the representations
of SU(2) by using the formalism of lowering operators. Here, one identifies a basis for the algebra of all lowering operators
and, for each irreducible representation, gives a prescription for choosing a subcollection of lowering operators that yields a
basis upon application to the highest weight vector. Bases obtained through lowering operators are particularly convenient for
computing matrix coefficients of observables as the calculations reduce to the commutation relations for the standard matrix
units. The best known examples of this approach are the extremal projector construction of the Gelfand–Zetlin basis and the
crystal (or canonical) bases of Kashiwara and Lusztig. In this paper, we describe another simple method of obtaining bases for
the irreducible representations via lowering operators. These bases do not have the algebraic canonicity of the Gelfand–Zetlin
and crystal bases, but the combinatorics involved are much more straightforward, making the bases particularly suited for
physical applications.
Keywords: unitary group, special unitary group, irreducible representations, lowering operators, spin-free quantum chemistry,
many-body problem
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1. Introduction

The representation theory of the unitary groups
plays a fundamental role in many areas of physics
and chemistry. The first and best-known application
is the appearance of the special unitary group SU(2)
in the quantum theory of angular momentum [1]. El-
liott’s SU(3) model of the nucleus provides a bridge
between the standard and collective models [2–4], and
various low-dimensional unitary groups have been used
in particle physics [5]. More general unitary groups
arise in the many-body problem [6, 7], quantum chem-
istry [8, 9], and in quantum computation [10, 11].

To provide some physical insight, we describe the
role of the unitary groups in the many-body prob-
lem. Consider a system with n single-particle boson or
fermion states. The unitary group U(n) then acts on the
corresponding Fock space as well as on the N -particle
component for each N . The unitary symmetry appears
naturally from the creation and annihilation operator
formalism. If a∗i and ai are the creation and annihi-
lation operators for state i, let Eij = a∗i aj , the transi-

tion operator from state j to state i. These operators
satisfy the same commutation relations as the standard
basis for the Lie algebra of the n × n general linear
group [12], and accordingly the Lie algebra (i. e., the
infinitesimal generators) of U(n) is spanned by the op-
erators Eij + Eji for i ≤ j and i(Eij − Eji) for i < j.
(One obtains the usual physics convention for the Lie
algebra by multiplying these operators by i.)

A variation of this procedure appears in the spin-
free approach to quantum chemistry pioneered by Mat-
sen [9]. In this theory, one studies the electronic struc-
ture of molecules by only considering the spatial com-
ponent of the wavefunctions. Instead of single occu-
pancy fermion orbitals, one considers “freeon” orbitals,
which can contain up to two electrons. As Matsen has
written, the motivation for this theory is “to separate the
spin kinematics (only an indicator) from the freeon dy-
namics which contains the basic physics, i. e., the spin-
free Coulomb repulsion” [13]. In the spin-free unitary
group formulation (one of four equivalent formulations
of spin-free quantum chemistry [9]), if n is the number
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of freeon orbitals, the Hamiltonian is a quadratic poly-
nomial in the generators of U(n), and U(n) acts on the
space of freeon wavefunctions.

It is straightforward to give a classification of the ir-
reducible representations for U(n). All finite-dimen-
sional representations have bases consisting of weight
vectors: simultaneous eigenvectors for the Eiis. The
simultaneous eigenvalue will be an n-tuple of inte-
gers called a weight. In the context of the many-
body problem, the Eiis are called number operators,
and the eigenvalue of Eii is just the number of par-
ticles in state i. The collection of weights appear-
ing in an irreducible representation contains a unique
maximum (with respect to a certain partial order de-
scribed in Section 2), which will be a nonincreasing
sequence (λ1, . . . , λn), and the irreducible represen-
tations are parameterized by highest weights of this
form. For example, in spin-free quantum chemistry,
the highest weights corresponding to freeon states will
be of the form (2, 2, . . . , 1, 1, . . . , 0, 0, . . . ). However,
for physical applications, it is not enough to be able
to distinguish one irreducible representation from an-
other or even to decompose any given representation
into irreducible components; rather, one needs explicit
bases for the irreducible representations in order to la-
bel states of the physical system and to compute matrix
coefficients of observables.

There are several constructions of bases for the ir-
reducible representations. The most classical con-
struction is the Weyl module approach introduced by
Schur [14] and popularized by Weyl [15]; here, the ir-
reducible representations are realized as tensors with
appropriate symmetry properties. Bases can be given
by associating explicit tensors to combinatorial objects
called semistandard Young tableaux, which will be de-
fined in Section 2.3.

The basis most commonly used in physical applica-
tions is the Gelfand–Zetlin basis. If U(n−1) is viewed
as a subgroup of U(n) via the obvious embedding into
the upper left n− 1× n− 1 block, then the irreducible
representation Wλ with highest weight λ, viewed as a
representation of U(n − 1), is simply reducible, i. e.,
each irreducible component has multiplicity one. More
precisely, we have the Weyl Branching Rule [16]:

Wλ|U(n−1) =
⊕
µ

Wµ , (1)

where the sum runs over all µ = (µ1, . . . , µn−1) sat-
isfying λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn.
Iterating this procedure using the chain of subgroups
U(n) ⊃ U(n − 1) ⊃ · · · ⊃ U(1) gives a decomposi-

tion of Wλ into one-dimensional subspaces, since the
irreducible representations of the abelian group U(1)
are one-dimensional. We thereby obtain an orthonor-
mal basis indexed by a highest weight for each U(k),
1 ≤ k ≤ n; explicitly, a state is given by the triangular
array of integers∣∣∣∣∣∣∣∣

λ1n λ2n . . . . . . λnn

λ1n−1 . . . λn−1n−1

. . . . . .
λ11

〉
,

where λin = λi.
It is useful to construct bases of irreducible repre-

sentations by generalizing the ladder operator approach
to the representations of SU(2) via the formalism of
lowering operators. An operator is called a lowering
operator if it is a polynomial in the strictly lower tri-
angular matrices Eij for i > j. (Sometimes, one al-
lows the diagonal operators Eii as well.) It is well
known that every element in Wλ is obtained by apply-
ing a lowering operator to a fixed highest weight vector
vλ. A basis for the irreducible representations can thus
be obtained by choosing a collection of lowering op-
erators for each λ which upon application to the high-
est weight vector vλ give a basis for Wλ. Since one
can assign weights to lowering operators so that the µ
weight space of Wλ is obtained from vλ using opera-
tors of weight µ−λ, this method can be refined to give
bases of each weight space. Such collections of lower-
ing operators give bases independently of any concrete
realization of the representations. One can use this ap-
proach to compare weight spaces for irreducible repre-
sentations with different highest weights and even for
different U(n)s (see Section 3.3). Furthermore, such
bases are particularly suited for physical applications
because they allow for the mechanical computation of
matrix coefficients of observables. Indeed, since most
important observables are also polynomials in the Eijs
(for any i, j), matrix coefficients in terms of such a ba-
sis may be computed directly from the commutation
relations of the Eijs.

A desirable way to implement the lowering operator
method is to start by identifying a basis for the algebra
of all lowering operators. One then gives a prescrip-
tion for choosing for each irreducible representation a
subcollection that yields a basis upon application to the
highest weight vector.

One scheme for choosing lowering operators gives
rise to the Gelfand–Zetlin basis for the irreducible rep-
resentations. A well-known classical procedure is due
to Moshinsky and Nagel [17]. They showed how to
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find explicit lowering operators taking a highest weight
vector to the Gelfand–Zetlin states. Effectively, they
realized the Gelfand–Zetlin basis through a collection
of lowering operators. This could then be used to com-
pute matrix coefficients, as for example in Moshinsky’s
work on the many-body problem [6].

A more systematic approach to finding these low-
ering operators uses the theory of extremal projectors
discovered by Asherova, Smirnov, and Tolstoy [18, 19]
and extensively developed by Zhelobenko [20]. The
extremal projector projects a certain extension of the
universal enveloping algebra onto its highest weight
space along its lower weight spaces. Using the the-
ory of Mickelsson–Zhelobenko algebras [20–23], these
operators can be used to obtain the Gelfand–Zetlin
bases described above. A more detailed history and
development of this approach is given in the survey
article [24]. Moreover, extremal projectors lead to
Gelfand–Zetlin type bases in a much wider setting.
For example, they have been obtained for other clas-
sical groups [25], for Lie superalgebras and for quan-
tum groups by Tolstoy [26, 27], and for Yangians by
Molev [28]. (There are several other constructions of
Gelfand–Zetlin bases. For example, the original con-
struction for quantized enveloping algebras did not use
extremal projectors [29, 30].) We also remark that ex-
tremal projectors have many other applications in rep-
resentation theory; see, for example, the review arti-
cle [31].

Another scheme is delineated in the main theorem of
this paper. It gives explicit lowering operators that take
highest weight vectors to one of the familiar bases for
Weyl modules. The scheme is analogous to Moshinsky
and Nagel’s work on the Gelfand–Zetlin basis. While
these Weyl bases are well-known [32–34], the corre-
sponding lowering operator method is not. One starts
with a standard basis of monomial operators for the
algebra of lowering operators. There is then a sim-
ple combinatorial prescription involving semistandard
Young tableaux for selecting those monomial operators
that give rise to a basis for a specific irreducible repre-
sentation.

An additional approach of great current interest
are the crystal (or canonical) bases of Kashiwara and
Lusztig [35, 36]. Here, the theory of quantum groups
is used to construct a basis for the algebra of lowering
operators which gives rise to bases for all irreducible
representations simultaneously. More specifically, if
the distinguished lowering operators are denoted by Pi,
then the set of nonzero elements of the form Pi · vλ is
a basis of Wλ. Unfortunately, this algebraic prescrip-

tion for finding the crystal bases is deceptively simple
as it is difficult to write down these operators explic-
itly [37–39].

Both the Moshinsky–Nagel bases and the crystal
bases of lowering operators have certain drawbacks.
One disadvantage is that the physical significance of
the states is somewhat obscure. For instance, in the
context of quantum chemistry, Paldus and Sarma have
remarked on “the unphysical nature” of the Gelfand–
Zetlin basis and have observed that this is a crucial
flaw in the valence bond scheme [40]. (See Fig. 1
of [40] for an illustration of this in the case of ben-
zene.) Another is that the lowering operators involved
are complicated. Indeed, the Moshinsky–Nagel opera-
tors, though explicit, are already unwieldy for SU(4),
and no non-algorithmic formula for the crystal basis
operators is known. For physical applications, it would
be desirable to have bases of lowering operators which
are easier to use. We remark that there is no closed for-
mula for matrix elements in the Weyl basis (as there is
for the Gelfand–Zetlin basis). However, for the cases
of interest to quantum chemistry, namely representa-
tions corresponding to two column Young tableaux,
these matrix elements can be computed using algorith-
mic methods. For example, the Clifford algebra uni-
tary group approach (CAUGA) to quantum chemistry
developed by Paldus and Sarma applies to the Weyl ba-
sis [40, p. 5137].

The goal of this paper is to find a basis of lowering
operators that is as simple as possible. In particular,
consider the monomials in the Eijs for i > j. The
irreducible representation Wλ is spanned by the mono-
mial lowering operators applied to vλ.1 These states
are comparatively easy to interpret physically. For ex-
ample, in the many-body problem, they are obtained
from the highest weight vector by a specific sequence
of transitions between single-particle orbitals. It is also
easy to compute matrix coefficients in terms of these
states. However, in order to determine vectors in an ir-
reducible representation unambiguously, it is still nec-
essary to extract a linearly independent subset, and in
physical applications, this has only been done in an ad
hoc manner for relatively small cases. We will explain
how to overcome this problem.

For example, consider the case of quantum chem-
istry. The physical intuition provided by the generator
state approach leads to it playing a significant role in
spin-free quantum chemistry, and Matsen and Pauncz
1 In quantum chemistry, this method is called the generator state

approach [41].
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devote considerable space in their monograph [9] to the
subject. They provide two abstract methods of using
the generator states to obtain bases (Gram–Schmidt or-
thogonalization and a method of Rowe [42] that goes
back to Löwdin [43]), but the procedures are not car-
ried out for a general irreducible representations and
the resultant basis vectors are not themselves generator
states. In fact, Matsen and Pauncz carry out explicit ex-
amples only for representations that are small enough
to allow one to find bases of generator states by brute
force. Our methods produce bases of generator states
in general.

In this paper, we will show how to choose explicit
monomial lowering operators which give rise to bases
for the irreducible representations Wλ of U(n), or,
more specifically, for its µ weight space Wµ

λ . Features
of this basis include:

1. The bases are obtained by associating monomial
lowering operators to certain combinatorial objects
called semistandard Young tableaux. Accordingly,
they are easily calculated by computer.

2. The lowering operators are left unchanged if the
same multiple of (1, . . . , 1) is added to both λ and
µ.

3. The lowering operators are independent of n in a
sense made precise in Corollary 18.

4. The lowering operators for the weight space Wµ
λ

depend only on the difference λ − µ for λ generic
(in a sense given in Corollary 19).

Subsequent to proving Theorem 3, the authors be-
came aware of the precedent of Carter and Lusztig [44].
This paper is a deep and technical paper in which
the classical theory of polynomial representations of
GLn(C) is extended to the modular (i. e. positive
characteristic) theory using tools such as the Kostant
Z-form of the universal enveloping algebra and the
affine Weyl group, and it includes a version of Theo-
rem 3 [44, Section 3.5]. Nevertheless, the present paper
contains a new proof requiring only textbook Lie the-
ory, and the result does not seem to be well known in
the physics and general mathematics communities. We
have also demonstrated some properties of these bases
that were not given in [44].

We conclude the introduction with a brief descrip-
tion of the rest of the paper. In Sec. 2, we re-
call some basic facts about the representation theory
of the unitary groups. In the following section, we
show how to associate monomial lowering operators to

semistandard Young tableaux and state our main the-
orem. We also provide some examples. In particu-
lar, we discuss the eightfold way (or equivalently, the
three freeon orbital, three electron problem) and the
56-dimensional representation of SU(6) that describes
low-lying baryons. Next, we give some properties of
the bases. Finally, we prove the main result in Sec. 4.

2. Preliminaries

We will restrict attention for the present to SU(n)
and discuss the necessary modifications to extend our
results to U(n) later. It will be convenient to work
with the Lie algebra sln(C), which has the same finite-
dimensional representations as SU(n).

2.1. Irreducible representations of sln(C)

We begin by recalling the basics of the representa-
tion theory of sln(C) (see for example [34]). Let h
be the subalgebra of sln(C) consisting of the diagonal
trace-free matrices; it is called a Cartan subalgebra. A
weight vector v for a representation V of sln(C) is a
simultaneous eigenvector for the action of h. The si-
multaneous eigenvalue will be a linear functional λ on
h called a weight; we let V λ denote the corresponding
weight space. An element of h∗, the dual space of h, is
determined by the n − 1-tuple consisting of its values
on any basis of h, typically by its values on the diago-
nal matrices Hi = Eii − Ei+1,i+1 for 1 ≤ i ≤ n − 1.
(These His are called simple coroots.) However, it will
be more convenient to describe h∗ in terms of the dual
space of the algebra d of diagonal matrices (with no re-
striction on the trace). Let {Li} be the dual basis to
the basis {Eii} for d, so Li(Ejj) = δij . An element
of d∗ can be written uniquely as

∑n
i=1 aiLi, which we

will often view as the n-tuple (a1, . . . , an). Each Li

restricts to give a functional on h, but of course they
are no longer independent. Viewed as elements in h∗,
they are subject to the condition tr =

∑n
i=1 Li = 0.

Thus, λ ∈ h∗ can be viewed an n-tuple, well-defined
up to the addition of a real number a to each coordi-
nate. This means that formally we can express h∗ as a
quotient space:

h∗ = {
n∑

i=1

aiLi | ai ∈ C}/{a
n∑

i=1

Li | a ∈ C} .

We get a unique representative for a functional by nor-
malizing so that an = 0.

Every finite-dimensional representation of sln(C) is
a sum of weight spaces, and those weights appearing in
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this way can be expressed as n-tuples of integers. Ac-
cordingly, the possible weights form the weight lattice:

ΛW = {
n∑

i=1

λiLi | λi ∈ Z}/{a
n∑

i=1

Li | a ∈ Z} .

Again, we can normalize the coordinates for a weight
so that λn = 0. However, we will also have occasion to
use another normalization. Note that

∑n
i=1 λi is well-

defined modulo n, so if d ∈ Z is congruent to this sum,
we can find a representative for the weight whose coor-
dinates sum to d.

The nonzero weights of the adjoint representation
(i. e., sln(C) acting on itself via x · y = xy − yx)
are called roots. The roots of sln(C) are Li − Lj for
i 6= j with corresponding root vector Eij . Recall that
the standard choice of simple positive roots for sln(C)
is αi = Li − Li+1 for 1 ≤ i ≤ n − 1. With this
choice, the root vector Eij is positive (resp. negative)
if i < j (resp. i > j). The span of the positive root vec-
tors forms the subalgebra n of strictly upper triangular
matrices; similarly, the negative root vectors span the
subalgebra n of strictly lower triangular matrices. The
weight lattice admits a partial order defined by µ ≺ λ if
and only if λ− µ is a nonnegative integral linear com-
bination of the αis. It is immediate that the action of
positive (resp. negative) roots takes a weight space to a
weight space with a higher (resp. lower) weight.

A weight λ is called dominant if λ(Hi) ≥ 0 for
1 ≤ i ≤ n− 1. Concretely, λ = λ1L1 + . . . λn−1Ln−1

is dominant if and only if λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0.
There is a one-to-one correspondence between irre-
ducible representations and dominant weights. If Vλ

is the irreducible representation corresponding to the
dominant weight λ, then λ is the highest weight in Vλ

with respect to the partial order given above, and the
highest weight vector is unique up to scalar.

2.2. Raising and lowering operators

We now describe the algebras of raising and low-
ering operators. The universal enveloping algebra
U(sln(C)) is the associative algebra generated by the
elements of sln(C) with commutation relations deter-
mined by the Lie bracket of sln(C). The universal en-
veloping algebra has the property that any representa-
tion of sln(C) is also a representation of U(sln(C))
and vice versa. Given an ordered basis X1, . . . , Xn2−1

for sln(C), the elements of U(sln(C)) are polynomi-
als in the Xis, and by the Poincaré–Birkhoff–Witt the-
orem, the monomials Xi1

1 . . . X
in2−1

n2−1 are a basis for
U(sln(C)). We will always use the basis for sln(C)

consisting of the simple root vectors Eij and simple
coroots Hi. We will not specify the order now, but
it will respect the order in the direct sum decomposi-
tion sln(C) = n ⊕ h ⊕ n,2 so that the lower triangular
matrices come first, the diagonal matrices second, and
the upper triangular matrices last. The algebra of rais-
ing operators for sln(C) is the subalgebra consisting
of polynomials in the positive root vectors; it is iso-
morphic to U(n), the universal enveloping algebra for
n. Similarly, the algebra of lowering operators is just
U(n), which may be viewed as the subalgebra of poly-
nomials in the negative root vectors.

It is well known that if V is irreducible with highest
weight vector v, then V = U(n) · v, so that a span-
ning set for V is obtained by applying all monomial
lowering operators to v. We will abuse terminology
slightly and say that V is spanned by lowering opera-
tors. (In fact, it is possible to realize V as a quotient of
U(sln(C)) by a certain left ideal in such a way that the
coset of 1 is a highest weight vector [45]. This means
that V is spanned by the images of lowering operators
in this quotient space.) Note that the lowering operator∏

i>j E
kij

ij (with the product taken in some fixed order)
sends the weight space V λ to V µ, where

µi = λi +
∑
j<i

kij −
∑
j>i

kji . (2)

This implies that
∑

µi =
∑

λi. These sums are actu-
ally only well-defined modulo n, so we obtain the fact:

If the weight space V µ
λ 6= 0, then

∑
µi ≡

∑
λi

mod n.

We now normalize the weights appearing in Vλ as fol-
lows:

1. The dominant weight λ is chosen with λn = 0.

2. All other weights are chosen so that their coordi-
nates sum to

∑
λi.

Monomial lowering operators are also weight vectors;
the corresponding weights may be normalized so that
their coordinates sum to zero. With these normaliza-
tions, the monomial lowering operator given above tak-
ing V λ to V µ has weight µ− λ.

It is clear that the lowering operators for sln(C) are
also lowering operators for slm(C) if m ≥ n. Ac-
cordingly, it will be convenient to have a universal al-
gebra Low containing all lowering operators indepen-
dent of n. This algebra is generated by all Eij with

2 We denote these algebras by nn, hn, and nn, if the ambient
sln(C) is not clear from context.
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i > j ≥ 1 subject to the obvious commutation re-
lations. More formally, let sl∞(C) =

⋃
n≥1 sln(C);

it is the Lie algebra of infinite square matrices (with
entries indexed by ordered pairs of positive integers)
with only finitely many nonzero entries and whose di-
agonal entries sum to 0. The lower triangular subal-
gebra n∞ is also an increasing union of this form, and
Low = U(n∞) =

⋃
n≥1 U(nn) ⊂ U(sl∞).

2.3. Semistandard Young tableaux

In order to describe an explicit basis of mono-
mial lowering operators, we will need to introduce
some combinatorial machinery. If d is a positive in-
teger, a partition λ of d is a nonincreasing sequence
(λ1, . . . , λk) of positive integers which sum to d. The
Young diagram associated to λ is a left-justified collec-
tion of boxes, with λi boxes in row i; λ is called the
shape of the diagram.3 A Young tableau is obtained by
filling in the boxes of a Young diagram with positive in-
tegers. The shape of a tableau T is denoted by sh(T ).
We say that a Young tableau with d boxes is semistan-
dard if the numbers assigned to the boxes are integers
from 1 to d with the entries in each row nondecreasing
and the entries in each column increasing. If µ is an-
other partition of d (or any sequence of nonnegative in-
tegers summing to d), then a tableau is called semistan-
dard on λ of content µ if it is semistandard with shape λ
and contains µ1 1s, µ2 2s, etc. We denote the content of
T by co(T ). A sequence µ which appears as the con-
tent of a semistandard tableau with shape λ is called
an admissible content for λ. The number of tableaux
with shape λ and content µ is the Kostka number Kλµ.
We will denote the set of such semistandard tableaux
by S

µ
λ and the set of all semistandard tableaux on λ

by Sλ =
⋃

µ S
µ
λ. The analogous set of tableaux where

entries are restricted to {1, . . . n} (equivalently, µ has
length at most n) will be denoted by Sλ(n). Finally,
S(n) will denote the set of all semistandard tableaux
with λ (resp. µ) of length less than (resp. at most) n,
and S will denote the set of all semistandard tableaux.

It is clear that the dominant weights for sln(C) cor-
respond to Young diagrams with at most n − 1 rows.
We use λ to denote both the dominant weight λ1L1 +
· · · + λn−1Ln−1 and the partition (λ1, . . . , λn−1). It
is less obvious that a weight µ appearing in Vλ can be
interpreted as the content of a semistandard tableau on
3 It will sometimes be convenient to allow partition sequences to

end with a string of zeros. Of course, sequences determine the
same partition and Young diagram when their nonzero entries co-
incide.

λ. To see this, one must show that each µi is nonneg-
ative and moreover that

∑s
i=1 µi ≤

∑s
i=1 λi for all s

(because in a semistandard tableau, an integer ≤ s can
only appear in the first s rows). The second statement
follows immediately from equation (2), since this equa-
tion gives

∑s
i=1 µi =

∑s
i=1 λi −

∑s
i=1

∑
j>s kji. To

prove that µi ≥ 0, it suffices to show that µ1 ≥ 0,
since the set of weights in Vλ is closed under permu-
tations [34]. The lowest weight appearing in Vλ is
ν = (0, λn−1, . . . , λ1), and V µ

λ is generated by apply-
ing appropriate monomial raising operators

∏
i<j E

kij

ij

to a lowest weight vector. In particular, one obtains
µ1 =

∑
j>1 k1j ≥ 0. Thus, µ makes sense as the con-

tent of a tableau. In fact, it is known that dim V µ
λ =

Kλµ [34].

3. Bases of monomial lowering operators

3.1. Semistandard tableaux and lowering operators

We are now ready to define the lowering operators
that will provide bases for the irreducible representa-
tions of the unitary groups. In particular, we show how
to associate a monomial lowering operator to any semi-
standard tableau.

Consider Hebrew lexicographic order on the set
{(s, i) | s > i ≥ 1}, i. e., (s, i) < (t, j) if i < j
or i = j and s < t. The corresponding order on the
Esis induces a Poincaré–Birkhoff–Witt basis of Low
and each U(n).

We now assign an element of this basis to any semi-
standard tableau. Let T be a semistandard tableau.
Note that Tij ≥ i. For each s > i, let asi = #{j |
Tij = s}, the number of times s appears in row i.
We define a map γ : S → Low by setting γ(T ) to be
the monomial lowering operator consisting of the Easi

si s
written in the order described above:

γ(T ) = Ea21
21 . . . Ean1

n1 Ea32
32 . . . E

ann−1

nn−1 . (3)

In other words, γ(T ) is obtained by sweeping through
T from left to right and top to bottom and writing down
the negative root vector Esi each time one reaches a
box in the ith row containing the entry s > i.

Remark 1. Equation (3) defining γ makes sense for
general tableaux T with Tij ≥ i. Furthermore γ(S) =
γ(T ) if the content of each row is the same for S and
T .
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Example 2.

T =

1 2 3 3 5
2 4 4
3 5
5

γ(T ) = E21E
2
31E51E

2
42E53E54 .

Of course, γ(T ) will only be a lowering operator for
sln(C) if T has at most n − 1 rows and no entry is
greater than n. Thus, if the length of λ is smaller than
n, γ restricts to give a function γnλ : Sλ(n) → U(nn).
Moreover, γnλ restricts to define maps γµ

λ : S
µ
λ →

U(nn)µ−λ for each admissible µ of length at most n.
As we will see in Sec. 3.3, the image of γ is the

entire given PBW basis of Low while γ(S(n)) is the
PBW basis for U(nn). In fact, it is possible to choose a
minimal tableau representing any basis element.

3.2. Main theorem and examples

We are now ready to state the main theorem.

Theorem 3. Let Vλ be the irreducible representation
of SU(n) with highest weight λ and highest weight
vector vλ. Then if µ is any admissible content of length
at most n, the set {γµ

λ(T ) · vλ | T ∈ S
µ
λ} is a basis for

the weight space V µ
λ . In particular, {γnλ(T ) · vλ | T ∈

Sλ(n)} is a basis for Vλ.

It should be noted that if µ is an admissible content
for λ which is not a weight appearing in λ, then γµ

λ(T ) ·
vλ = 0 for every semistandard T with this content.
However, it is not true that if T /∈ Sλ(n), then γ(T ) ·
vλ = 0. This is unlike the situation for crystal bases,
where the basis operators giving the basis for Vλ are
precisely those which do not kill vλ.

The proof of the theorem will be given in Section 4.

Remark 4. There are orders besides the Hebrew lexico-
graphic order that yield an analogue of Theorem 3, but
with different bases for the irreducible representations.

Remark 5. It is of course possible to give a version of
this theorem (and of all other results in this paper) in
terms of raising operators.

Example 6. For SU(2), the partition λ is just a non-
negative integer p, so that the Young diagram has a sin-
gle row. The admissible contents with length at most 2
are (i, p − i) for 0 ≤ i ≤ p, giving rise to tableaux of
the form 1 1 2 2 2 . The corresponding basis of lowering
operators for Vp is {Ei

21 | 0 ≤ i ≤ p}. Up to nor-
malization, these are just the usual lowering operators

J i
− on the irreducible representation with total angular

momentum p/2 [1].

The next two examples come from particle physics
(and quantum chemistry).

Example 7. (The eightfold way) The baryon and me-
son octets are described by the adjoint representation of
SU(3) with Young diagram [5]. The basis elements
obtained by applying the lowering operators from The-
orem 3 to the highest weight vector vλ = E13 are given
in Table 1 as are the corresponding baryon and meson
states. The weights are also given in terms of the charge
Q and strangeness S quantum numbers.

The basis given in the table can also be interpreted as
a basis of generator states in spin-free quantum chem-
istry. Indeed, the irreducible representation of U(3)
with highest weight (2, 1, 0) corresponds to the dou-
blet space for a system with three freeon orbitals and
three electrons (e. g., the allyl radical); concretely, it
consists of states with two electrons in one orbital and
a single electron in another. The basis is obtained by
applying the γµ

λ(T ) to the highest weight state with two
electrons in the lowest state and the third in the middle
state. Matsen works out this example in detail in [46].

Example 8. The low-lying baryons are described by
the 56-dimensional representation of SU(6) with Young
diagram [5]. All weight-spaces are one-dimension-
al, and the possible weights are all 6-tuples with non-
vanishing entries {3}, {2, 1}, and {1, 1, 1}. If the first
entry of the weight vector is nonzero, then the cor-
responding lowering operators are I , Ei1, E2

i1, and
Ei1Ej1; otherwise, the operators are E3

i1, E2
i1Ej1,

Ei1E
2
j1, and Ei1Ej1Ek1. Here, 2 ≤ i < j < k.

Example 9. Let λ = 4L1 + 2L2 + L3 and µ = 2L1 +
2L2+2L3+L4. For any SU(n) with n ≥ 4, the weight
space V µ

λ is 6-dimensional. The semistandard tableaux
and corresponding lowering operators are given in Ta-
ble 2. The third column of the table is explained in
Example 14.

3.3. Properties of the bases

It is evident from the construction that different
semistandard tableaux can give rise to the same low-
ering operator; we call such tableaux operator equiva-
lent. The tableaux S and T are operator equivalent if
γ(S) = γ(T ). More explicitly, S and T are operator
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Table 1. The baryon and meson octets.

µ (Q, S) T γµ
λ (T ) γµ

λ (T ) · vλ baryon meson

(2, 1, 0) (1, 0) 1 1
2

I E13 p K+

(2, 0, 1) (1,−1) 1 1
3

E32 −E12 −Σ+ −π+

(1, 2, 0) (0, 0) 1 2
2

E21 E23 n K0

(1, 1, 1) (0,−1) 1 2
3

E21E32 E11 − E22

√
2Σ0

√
2π0

1 3
2

E31 E33 − E11 − 1√
2
Σ0 +

√
3
2
Λ − 1√

2
π0 +

√
3
2
η

(1, 0, 2) (0,−2) 1 3
3

E31E32 −E32 −Ξ0 −K
0

(0, 2, 1) (−1,−1) 2 2
3

E2
21E32 2E21 2Σ− 2π−

(0, 1, 2) (−1,−2) 2 3
3

E21E31E32 E31 Ξ− K−

Table 2. Lowering operators for λ = 4L1 + 2L2 + L3

and µ = 2L1 + 2L2 + 2L3 + L4.

T γµ
λ (T ) minimum equivalent tableau

1 1 2 2
3 3
4

E2
21E

2
32E43

2 2
3 3
4

1 1 2 3
2 3
4

E21E31E32E43
2 3
3
4

1 1 2 3
2 4
3

E21E31E42
2 3
4

1 1 2 4
2 3
3

E21E41E32
2 4
3

1 1 3 3
2 2
4

E2
31E43

1 3 3
2
4

1 1 3 4
2 2
3

E31E41 3 4

equivalent if they have the same number of entries s in
row j for each j and s > j.

Lemma 10. Any operator in the PBW basis for U(nn)
is realized by a tableau in S(n).

Proof Consider a basis operator A =
∏

j<i≤n E
aij

ij .
We produce a semistandard tableau SA of shape λ,
where λ = (λ1, . . . , λn−1), with λi defined as follows.
Let λn = 0 and λj = λj+1 +

∑
i>j aij . The jth row

of SA will contain λj+1 entries j and aij entries i for
i > j. The resulting tableau is semistandard since all
entries in row j + 1 are at least j + 1, and if an entry in
the jth row is above a box, then its entry is j. �

Corollary 11. There is a one-to-one correspondence
between the PBW basis for U(nn) (resp. Low ) and op-
erator equivalence classes of tableaux in S(n) (resp. S).

We remark that once λ and µ are fixed, there is at
most one element of S

µ
λ in each equivalence class.

The representative of each operator equivalence
class constructed in the proof of the lemma is usually
considerably bigger than necessary. In fact, there is a
smallest representative of each class. Given two non-
increasing sequences λ and λ′, we say that λ � λ′ if
λ′ − λ is a nonincreasing, nonnegative sequence.

Proposition 12.

1. Given A an operator in the PBW basis for Low ,
there is a unique semistandard tableau TA such that
γ(TA) = A and, for any S ∈ S with γ(S) = A,
sh(S) � sh(TA). If A ∈ U(nn), then TA ∈ S(n).

2. Suppose that A has weight τ . Then there exists
S ∈ S

µ
λ such that γ(S) = A if and only if τ =

µ − λ, sh(S) � sh(TA), and co(S) � co(TA).
In this case, sh(S) − sh(TA) = co(S) − co(TA),
and S is obtained from TA by adding bk boxes with
entry k to row k, where bi = (sh(S)− sh(TA))i.

Example 13. The tableau in Example 2 is the smallest
representative of its operator equivalence class.

Example 14. None of the tableaux in Table 2 are min-
imum representatives. The smallest representative in
each operator class is given in the third column of the
table.

Remark 15. An operator A may be represented by a
tableau that is smaller than any representation as a
semistandard tableau (cf. Remark 1); indeed, A may
be represented by a tableau of shape λ if and only if∑

i>j aij ≤ λj for each j. If A cannot be represented
as a possibly non-semistandard tableau of shape λ, i. e.,
A does not fit inside λ, then A · vλ = 0. This is shown
in Proposition 24.
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Proof Fix a basis operator A ∈ U(nn). The tableau
TA is constructed recursively from the tableau SA given
in the proof of Lemma 10. The shape of TA has length
n − 1, and its last row agrees with the last row of SA.
Assume that the jth row of TA has been constructed
(2 ≤ j ≤ n−1). Remove the boxes in row j−1 of SA

containing j − 1s and left justify the remaining boxes.
Slide these boxes the minimum number of spaces to the
right so that all entries are strictly smaller than those
in the jth row of TA, and add new boxes containing
j − 1s to fill out the row to the left. This is row j − 1
of TA. Let λA = sh(TA) and µA = co(TA). Note that
τ = µA − λA.

Now suppose S ∈ S
µ
λ and γ(S) = A. It is trivial

that τ = µ− λ. Let b = sh(S)− λA. We will show by
downward induction that b is a nonincreasing sequence
of nonnegative integers and that the last λA

j entries of
Sj (i. e., the jth row of S) coincide with (TA)j . We
first note that if j ≥ n, then Sj contains bj js and no
other entries. This implies that bj ≥ 0; moreover, since
S is a tableau, bn ≥ bn+1 ≥ bn+2 ≥ . . . . Next, each
box in Sn must be underneath an n − 1. Since Sn−1

contains exactly bn−1 n − 1s, we obtain bn−1 ≥ bn.
Also, (TA)n−1 contains no n − 1s, so the last λA

n−1

entries of Sn−1 are just (TA)n−1.
Finally, assume that bj < bj+1 with j ≤ n − 2.

Consider the semistandard tableau with two rows ob-
tained by omitting the first |Sj+1| − λA

j+1 boxes from
Sj and Sj+1. By inductive hypothesis, the lower row
is (TA)j+1. The entries greater than j in the upper row
are the same as those in (TA)j , but it has strictly fewer
entries equal to j. Since every entry in the upper row is
larger than the entry below, this contradicts the defini-
tion of (TA)j . Hence, bj ≥ bj+1. Since γ(S) = γ(TA),
the last λA

j entries of Sj are (TA)j . We have thus shown
that b is a nonnegative, nonincreasing sequence and that
co(S)− co(TA) = b.

For the converse, assume that λ � sh(TA) and µ �
co(TA) with µ−λ = τ . Let S be the tableau of shape λ
obtained by adjoining bj = (λ−λA)j boxes with entry
j to the left of each row of TA. We see immediately
that γ(S) = A and µ(S) = µA + (λ − λA) = λ +
µ − λ = µ, so it only remains to check that S is semi-
standard. Let (j, k) be the coordinates of a box that is
above another box. If k ≤ bj , then Sj+1,k ≥ j + 1 >
j = Sjk. Otherwise, k > bj ≥ bj+1, so Sj+1,k =
(TA)j+1,k−bj+1

> (TA)j,k−bj+1
≥ (TA)j,k−bj

= Sjk

as desired. This concludes the proof. �

We can now determine when the bases for V µ
λ and

V µ′

λ′ given in Theorem 3 come from the same set of

lowering operators. We denote the (finite) PBW basis
of Lowµ by {Aµ

q }, where q varies over an index set.

Theorem 16. Let Vλ be the irreducible representation
of SU(n) with highest weight λ and highest weight
vector vλ. If µ is a weight space of Vλ, then {Aµ−λ

q ·vλ |
λ � sh(T

Aµ−λ
q

), µ � co(T
Aµ−λ

q
)} is a basis for V µ

λ .
In particular, if Vλ′ is an irreducible representation of
SU(n′) with weight space µ′ such that λ−µ = λ′−µ′,
then the sets of monomial lowering operators giving
rise to the bases for V µ

λ and V µ′

λ′ coincide if and only
if λ � sh(T

Aµ−λ
q

) and µ � co(T
Aµ−λ

q
) precisely when

λ′ � sh(T
Aµ−λ

q
) and µ′ � co(T

Aµ−λ
q

).

Proof This follows from Theorem 3 and Proposi-
tion 12. �

Example 17. Consider λ′ = (3, 2, 1, 0) and µ′ =
(1, 2, 2, 1). The difference µ′ − λ′ is the same as µ− λ

from Example 9, but V µ′

λ′ is only 4-dimensional. The
corresponding lowering operators are the first four op-
erators from Table 2. The other two fail because µ′ −
co(TA) is not nonincreasing; they are (0, 1, 0, 0) and
(1, 2, 1, 0) respectively. Similarly, for λ′′ = (2, 2, 1, 0)
and µ′′ = (0, 2, 2, 1), V µ′′

λ′′ is one-dimensional, with ba-
sis coming from the first operator in Table 2.

Corollary 18. Let n be a positive integer such that λ
has length smaller than n and µ has length at most n,
and let Vλ(n) be the corresponding irreducible repre-
sentation of SU(n). Then the set of lowering operators
giving the bases for V µ

λ (n) is independent of n.

Corollary 19. Suppose that λ � sh(T
Aµ−λ

q
) and µ �

co(T
Aµ−λ

q
) for all q. Then the set of lowering operators

giving the basis for V µ
λ is precisely the PBW basis for

Lowµ−λ.

3.4. Representations of U(n)

The analysis of the previous sections also applies to
representations of the unitary group U(n). Here, the
weight lattice is ZL1 ⊕ · · · ⊕ ZLn, with the dominant
weights given by {λ1L1 + · · · + λnLn | λ1 ≥ λ2 ≥
· · · ≥ λn}. Again, the irreducible representations are in
one-to-one correspondence with the dominant weights,
and we let Wλ denote the irreducible representation
with highest weight λ.

The unitary group U(n) is a quotient of SU(n)×S1

via the multiplication homomorphism SU(n) × S1 φ→
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Un, so a representation of U(n) is the same as a rep-
resentation of SU(n) × S1 that is trivial on Ker(φ) =
{(e2πis/nI, e−2πis/n) | 0 ≤ s ≤ n−1}. It can be shown
that the irreducible representations of U(n) correspond
to the irreducible representations of SU(n)× S1 of the
form Vλ′⊗L⊗r, where r =

∑
λ′i+kn for some k ∈ Z;

here, L is the natural one-dimensional representation of
S1 [34, p. 232–233]. It is easy to check that the weights
of such a representation are given by µ + (k, . . . , k),
where µ is any weight of Vλ′ . It follows that given a
dominant weight λ = (λ1, . . . , λn), Wλ corresponds
to Vλ′ ⊗ L⊗r, with λ′ = (λ1 − λn, . . . , λn−1 − λn, 0)
and k = λn. It is now obvious that the lowering op-
erators given in Theorem 3 for Vλ′ provide a basis of
weight vectors for Vl; indeed, the basis is the same, but
with the weights shifted up by (λn, . . . , λn).

Theorem 16 and Corollaries 18 and 19 have obvious
analogues for U(n). We will not state them explicitly;
they are obtained by combining the results from Sec-
tion 3.3 with the following proposition.

Proposition 20. Let λ and λ′ be dominant weights for
U(n). If there exists an integer k such that λi − λ′i =
µi − µ′i = k for 1 ≤ i ≤ n, then the sets of monomial
lowering operators giving the bases for Wµ

λ and Wµ′

λ′

coincide.

Proof In both cases, the lowering operators come
from the semistandard tableau with shape λ̂ = λ −
(λn, . . . , λn) = λ′ − (λ′n, . . . , λ′n) and content µ̂ =
µ− (λn, . . . , λn) = µ′ − (λ′n, . . . , λ′n). �

4. Proof of the main theorem

We prove Theorem 3 by showing that the basis of
lowering operators corresponds to a known basis for the
Weyl module construction of irreducible representa-
tions of sln(C). This approach was introduced in [14]
and expounded in [15]. Denote the classical represen-
tation of sln(C) with underlying vector space Cn by
V . Let e1, · · · , en be the ordered basis which gives
the standard coordinates of Cn. Every irreducible rep-
resentation of sln(C) is a subrepresentation of tensor
products of the fundamental representation, V [15, 34].
Suppose λ is a dominant weight normalized so that
λn = 0. Let

∑
λi = d so that λ is both a partition of d

and a Young diagram with d boxes and k ≤ n−1 rows.
Number the boxes of λ from 1 to d starting left to right
and top to bottom. The permutation group Sd acts on
elements of ⊗d

i=1V by permuting the factors and also

on the boxes of λ. We will write the permutation group
action on the right.

Let R denote the subgroup of permutations of Sd

that preserve the rows of λ, and let C denote the sub-
group of permutations that preserve the columns of
λ. Recall that the Young symmetrizer for λ is the
element of the group algebra C[Sd] given by cλ =∑
σ=rc,r∈R,c∈C

(−1)cσ where (−1)c is the sign of the per-

mutation c. Young symmetrizers figure prominently
in the representation theory of Sd; indeed, each irre-
ducible representation of Sd is uniquely determined by
a Young symmetrizer. According to Weyl and Schur,

Vλ = span
{ ∑

σ=rc,r∈R,c∈C

(−1)sign cv(1)σ ⊗ · · ·

⊗v(d)σ | v1, · · · , vd ∈ {e1, · · · , en}
}

or equivalently,

Vλ = ⊗d
i=1V · cλ , (4)

as explained in [34].
Given a (not necessarily semistandard) tableau

T =

T11 T12 · · · · · · T1λ1

...
...

...
...

Tk1 · · · Tkλk

with Tij ∈ {1, · · · , n}, we let vT = eT11 ⊗ eT12 ⊗
· · · ⊗ eT1λ1

⊗ · · · ⊗ eTk1
⊗ · · · ⊗ eTkλk

· cλ denote the
corresponding vector in Vλ. It is easy to check that if
the tableau T has content µ, then vT ∈ V µ

λ . Note that
as T runs over these tableaux, the vectors

wT = eT11⊗eT12⊗· · ·⊗eT1λ1
⊗· · ·⊗eTk1

⊗· · ·⊗eTkλk

give the standard basis for⊗d
i=1V , and vT may be writ-

ten in terms of them via

vT =
∑

σ=rc,r∈R,c∈C

(−1)cwT ·σ .

Proposition 21. In the above notation, V µ
λ has {vT |

T ∈ S
µ
λ} as a basis, i. e., those vT s corresponding to

the semistandard tableaux on λ with content µ.

Proof This is a well-known result. However, the
proofs we found in the literature showed the analogous
fact for the vectors v′T =

∑
σ=cr,r∈R,c∈C(−1)cwT ·σ,

where the order of column and row permutations is re-
versed. (See, for example, [34, Exercises 6.14, 6.15]
or [47].) Accordingly, we give a sketch of the proof.
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Since the dimension of V µ
λ is equal to the size of

S
µ
λ [34], it suffices to show that the set {vT | T ∈ S

µ
λ} is

linearly independent. To show independence, we make
use of the notions of column equivalence and column
dominance as described, for example, in [48]. Two
tableaux with shape λ are column equivalent if the con-
tent of each column of the two tableaux is the same.
Hence, T and S are in the same equivalence class if and
only if S = T · c. There is a partial order D on column
equivalence classes of tableaux called column domi-
nance. More formally, we will view D as a preorder
on the set of tableaux of a given shape with T D S and
S D T implying that T and S are column equivalent.
We leave it to the interested reader to seek the definition
in [48], but we use the fact that it is a partial order on
classes of tableaux of shape λ and that T D T · r [48,
Corollary 2.10.3]. Therefore T D T · (rc). Suppose∑
T semistandard

aT vT is a linear combination, and let T ′ be

a maximal semistandard tableau with aT ′ 6= 0. This
means that if T ′ = T · σ for any T semistandard with
aT 6= 0, then T = T ′. Moreover, T ′ = T ′ · rc implies
that T ′ = T ′ ·r (or else T ′ ·rc is strictly smaller than T ′)
and hence c = 1 (since T ′ is strictly increasing down
columns). Thus, if we let k = |{r | T ′ · r = T ′}| ≥ 1,
then ∑

T semistandard

aT vT =
∑

T semistandard

aT

∑
rc

(−1)cwT ·rc

=
∑

T arbitrary

bT wT

with bT ′ = kaT ′ . Therefore,
∑

T semistandard

aT vT 6= 0,

and {vT | T ∈ S
µ
λ} is linearly independent set. This

completes the proof. �

Given a diagram λ, note that λ is an admissible con-
tent, and there is a unique semistandard tableau with
this content λ, namely, the tableau L with all entries in
the ith row being i:

L =
1 1 · · · · · · 1
...

...
...

...

k · · · k

. (5)

It is evident that a highest weight vector for Vλ is given
by vλ = vL. We will show that, for any semistandard
tableau of shape λ,

γnλ(T ) · vλ = NT · vT , (6)

where NT is a positive integer. Combining this equa-
tion with Proposition 21 will complete the proof of
Theorem 3.

Remark 22. It follows from the argument below that
for a semistandard tableau, NT is easily read from
γnλ(T ) as the product of the factorials of the powers,
e. g., for T = 2 2 2 2 3 3

3 3 3
, γnλ(T ) = E4

21E
2
31E

3
32, and

NT = 4!2!3!. Notice that this multiplicity appears in
the Σ− row in Table 1. These multiplicities also appear
in Carter and Lusztig, and the basis vectors that they
give for V µ

λ are in fact (NT )−1γnλ(T ) · vλ [44].

To demonstrate Equation (6), we need the following
lemma.

Lemma 23. Suppose that S is a tableau, i∈{1, · · · , k},
and the following hypotheses are satisfied:

a. The only boxes with entry i occur in the ith row.

b. Sij = i for 1 ≤ j ≤ g, where g > 0, and Sij > i
otherwise.

If j1 > i, then

1. Ej1ivS = gvŜ , where Sst = Ŝst for all (s, t) ex-
cept (s, t) = (i, g) and Ŝig = j1.

2. If g > 1, then Ŝ also satisfies hypotheses (a) and
(b).

Proof The proof is a straight calculation using the ac-
tion of an operator on a tensor product. Note that

vS = eS11 ⊗ · · · ⊗ eS1λ1
⊗ · · · ⊗ eSi1 ⊗ · · · ⊗ eSig

⊗ eSig+1 ⊗ · · · ⊗ eSiλi
⊗ · · · ⊗ eSk1

⊗ · · · ⊗ eSkλk
· cλ

= eS11 ⊗ · · · ⊗ eS1λ1
⊗ · · · ⊗ ei ⊗ · · · ⊗ ei ⊗ eSig+1

⊗ · · · ⊗ eSiλi
⊗ · · · ⊗ eSk1

⊗ · · · ⊗ eSkλk
· cλ ,



16 D.S. Sage and L. Smolinsky / Lith. J. Phys. 51, 5–18 (2011)

with the eis occurring exactly as eSi1 , · · · , eSig . Then,

Ej1ivS = eS11 ⊗ · · · ⊗ eS1λ1
⊗ · · · ⊗ Ej1iei ⊗ · · ·

⊗ ei ⊗ eSig+1 ⊗ · · · ⊗ eSiλi
⊗ · · · ⊗ eSk1

⊗ · · ·

⊗ eSkλk
· cλ + · · ·

+ eS11 ⊗ · · · ⊗ eS1λ1
⊗ · · · ⊗ ei ⊗ · · · ⊗ Ej1iei

⊗ eSig+1 ⊗ · · · ⊗ eSiλi
⊗ · · · ⊗ eSk1

⊗ · · ·

⊗ eSkλk
· cλ

= g · eS11 ⊗ · · · ⊗ eS1λ1
⊗ · · · ⊗ ei ⊗ · · ·

⊗ ei ⊗ ej1 ⊗ eSig+1 ⊗ · · · ⊗ eSiλi
⊗ · · ·

⊗ eSk1
⊗ · · · ⊗ eSkλk

· cλ

= gvŜ ,

since entries in the Si1, · · · , Sig positions may be inter-
changed via a permutation that leaves the rows invari-
ant. �

Proof [Proof of Equation (6)]. We apply Lemma 23
repeatedly. Suppose T is a semistandard tableau with
shape λ. We set the following notation: Ti,1 = · · · =
Ti,si = i, so the first entry bigger than i in the ith
row is in column si + 1; of course, si may be zero.
The tableaux that play the role of S in applications of
Lemma 23 are the tableau L from (5) above and the
tableaux T (i) defined below, not T itself. We examine
the effect of

γnλ(T ) = (ET1s1+11 · · ·ET1λ1
1) · · ·

(ETisi+1i · · ·ETiλi
i) · · · (ETksk+1k · · ·ETkλk

k)

on vλ = vL. The operators corresponding to a single
row are blocked in parentheses. We first observe that

(ETksk+1k · · ·ETkλk
k) · vλ = mkvT (k)

for some positive integer mk, where the tableau T (k)
matches L in the first k − 1 rows but matches T in the
kth row. To see this fact, apply the λk − sk operators
one at a time using Lemma 23 each time.

The initial tableau L satisfies the hypotheses of the
lemma. Applying the operators replaces the entries in

the kth row one at a time, from right to left, by the kth
row of T . Each step reduces the number of ks in this
row, since there are λk ks in L and only λk − sk op-
erators, the hypotheses of Lemma 23 hold to allow the
next application. One ends up with a positive integer
multiple of vT (k).

For j = 0, · · · , k − 1, let T (j + 1) be the tableau of
shape λ that matches L in the first j rows and matches
T in the rows below j. The entries in rows j + 1 to k
are all strictly greater than j and T (j + 1) satisfies the
hypotheses of Lemma 23. Now repeat the argument
moving up the rows. Observe that

(ETisi+1i · · ·ETiλi
i) · vTi+1 = mivT (i) ,

as follows. There are λi entries in the ith row of L that
are i, and there are λi − si operators. We can apply
Lemma 23 repeatedly; the hypotheses hold at each step
due to its Conclusion (2). The entries in the ith row are
replaced one at a time, from right to left, by the ith row
of T .

Since T (1) = T , Equation (6) is established. �

By Proposition 21 and Eq. (6), {γµ
λ(T ) · vλ | T ∈

S
µ
λ} is a basis for V µ

λ , thus demonstrating Theorem 3.
Unlike the situation for crystal bases, those lowering

operators in the PBW basis for U(n) not coming from
Sλ(n) do not necessarily kill vλ. However, if A is a
basis operator which does not fit inside λ in the sense
of Remark 15, then A · vλ = 0.

Proposition 24. Let A =
∏

j<i≤n E
aij

ij be a monomial
lowering operator (with the product in our usual order).
If A cannot be represented as γ(T ) for T a (not neces-
sarily semistandard) tableau of shape λ, then A·vλ = 0.

Proof The hypothesis is equivalent to the statement
that

∑
i>j aij > λj for some j; let s be the largest such

index. Let S be the tableau of shape λ with nondecreas-
ing rows which agrees with the highest weight tableau
L for the first s rows while, for j > s, the jth row con-
tains aij is and λj −

∑
i>j aij js. The same argument

as in the proof above shows that
∏

s<j<i≤n E
aij

ij · vL =
qvS for some constant q. Applying the rightmost λs

operators of the form Eis to vS gives a sum of tensor
products of the standard basis elements of V , none of
which contain es. This sum will be killed by the next
Eis. �
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ŽEMINANČIU̧JU̧ OPERATORIU̧, SKIRTU̧ UNITARINIU̧ GRUPIU̧ NEREDUKUOTINIAMS
ATVAIZDAMS, IŠREIKŠTINĖ BAZĖ

D.S. Sage, L. Smolinsky

Luizianos valstijos universitetas, Baton Ružas, JAV

Santrauka
Unitariniu̧ grupiu̧ atvaizdu̧ teorija fundamentaliai svarbi dauge-

lyje fizikos ir chemijos sričiu̧. Unitarinės simetrijos fizikinės siste-
mos būsenu̧ žymėjimui reikia turėti išreikštines bazes neredukuo-
tiniams atvaizdams. Vienas sisteminiu̧ būdu̧ gauti bazes yra api-
bendrinti laiptiniu̧ operatoriu̧ metoda̧ SU(2) atvaizdams, panau-
dojant žeminančiu̧ju̧ operatoriu̧ formalizma̧. Čia nustatoma bazė
visu̧ žeminančiu̧ju̧ operatoriu̧ algebrai ir kiekvienam neredukuoti-
niam atvaizdui pateikiama instrukcija, kaip parinkti žeminančiu̧ju̧
operatoriu̧ rinkinio dali̧, kuria̧ naudojant bazė gaunama iš didžiau-
sio svorio vektoriaus. Bazės, gautos žeminančiaisiais operatoriais,

ypač patogios skaičiuojant stebimu̧ dydžiu̧ matricinius koeficien-
tus, kadangi jie virsta komutacijos sa̧ryšiais standartiniams matrici-
niams vienetams. Žinomiausi šito metodo pavyzdžiai yra Gelfando
ir Cetlino bazės sukonstravimas naudojant kraštutinius projektorius
bei kristalinės (arba kanoninės) Kašivaros ir Lustigo bazės. Straips-
nyje aprašomas kitas paprastas būdas gauti neredukuotiniu̧ atvaizdu̧
bazes naudojant žeminančiuosius operatorius. Šios bazės nepasi-
žymi Gelfando ir Cetlino ar kristaliniu̧ baziu̧ kanoniškumu, tačiau
kombinatorika, su kuria susiduriama, yra daug paprastesnė ir dėl to
šios bazės ypač tinka fizikiniams taikymams.
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