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The radiative QED corrections for the valence electron of the neutral Rg (Z = 111) atom are estimated within the framework
of the post-Dirac–Fock method. In this method the Koopmans’ approximation is proposed for the electron propagator in the
QED diagrams. Such calculation is done for the first time for this super-heavy atom. These results contribute to the discussion
concerning the accuracy of the QED corrections in the super-heavy elements. They also provide the accuracy limit of the
modern relativistic theoretical calculations for the super-heavy elements.
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1. Introduction

Recent experimental success in the super-heavy nu-
clei synthesis strongly indicate the existence of the so-
called “Island of Stability” for neutron-rich nuclei with
nuclear charge numbers in the region Z ∼ 112. Ac-
cording to theoretical predictions, the half-life time for
nuclei with proton number Z = 112 and neutron num-
bers N ∼ 184 could be rather long. These pairs of pro-
ton and neutron numbers are supposed to correspond to
the filled proton and neutron shells.

The element E111 (Roentgenium) from the 11th
group of Mendeleev Periodic Table (MPT) or from the
coinage metal atoms group is very close to the peak of
the stability island. The element has received its actual
name only in 2004 from the International Union of Pure
and Applied Chemistry (IUPAC). Nevertheless, it looks
like that this element is the best candidate for the explo-
ration of the quantum electrodynamics (QED) effects
in the super-heavy atoms. The QED effects within the
Dirac–Fock (DF) method for valence electrons is the
main topic of our consideration. The electrons of heavy
atoms move in very strong Coulomb field and there-
fore the corresponding calculations should be prefer-
ably done in the complete relativistic framework. For
the valence electron in the super-heavy heavy atoms
relativistic effects become so important that the super-
heavy element chemistry does not simply follow the
regular periodic trend. According to the chemical prop-

erties obtained within the first theoretical studies, the
element 112 (the neighbour of Rg in MPT) should be-
long to the noble gases group (see [1]), but recent cal-
culations contradict this conclusion (see [2, 3]). This
means that more accurate theoretical studies of such el-
ements are very important.

The main objective of the present study is the com-
putation of the electronic states of the super-heavy
coinage metal Rg atom within the post-Dirac–Fock
(PDF) approach. The algorithm of PDF is described
in the following sections. The energy levels both for
the inner and for the valence states have been obtained
with the main QED self-energy correction (SE) as an
intermediate step of the Dirac–Fock procedure. It is
shown that the inner-electron self-consistent DF proce-
dure is quite important for 7s electron QED correction
in Rg. The other QED correction (the vacuum polar-
ization (VP)) can be taken into account within the same
PDF framework.

The numerical evaluation of the binding energy for
the inner and, particularly, for the valence electrons
in super-heavy atoms are of special attention for the
last forty years. The reasonable values can be found,
for example, in [4]. The modern theoretical evalua-
tions, like a modification of configuration interaction
(CI) method [2] or coupled cluster (CC) method [5], are
more reliable for the practical using. But all such cal-
culations do not take into account the SE corrections in
the framework of contemporary QED. It may be quite
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difficult to incorporate the SE effects in CI or CC meth-
ods. Nevertheless, the CI or CC computations can de-
fine the accuracy of all present relativistic calculations
without QED.

Our estimates can stimulate a discussion concerning
the accuracy of the QED corrections in the super-heavy
elements itself. The main difficulties of similar esti-
mates are considered in Ref. [6] for the valence elec-
trons of atoms from the 11th group of MPT and earlier
in Ref. [7] for the element from the first group of MPT.
Both papers have shown that the pure QED corrections
in so-called local-potential approach are not enough to
achieve the necessary accuracy of these calculations.

The present paper is organized as follows. In Sec. 2
the Koopmans’ approximation is introduced for the
one-particle Green’s function in quantum mechanics.
The main consequence of this approximation is the al-
gorithm for the self-consistent solution of the Dyson
equation with truncated mass-operator. This algorithm
is then transferred to QED and here it comprises the
self-consistent DF algorithm with the inherited radia-
tive corrections (PDF).

Section 3 presents the applications of this PDF
method for the SE correction. The numerical results for
the given correction are printed in Sec. 4. Some possi-
ble explanations for the obtained results are discussed
in Sec. 4 as well.

The atomic unit system (e = me = ~ = 1, where e
is the electron charge, me is the electron mass, and ~ is
the Planck’s constant) is used throughout the paper.

2. Koopmans’ approximation and one-particle
Green’s function

2.1. Energy of system and Koopmans’ approximation

As follows from the Brillouin’s conditions, in quan-
tum mechanics of electrons the Koopmans’ matrix K̃

K(Adv)
pq = 〈|

[
Ĥ, a†p

]
aq |〉 (1)

calculated with an optimal state function has to be Her-
mitean. The density matrix D̃ in atomic orbital (or
molecular orbital) basis set is written as follows:

Dpq = (ρN )pq = 〈| a†paq |〉 . (2)

Koopmans’ hole (advanced) equations are∑
r

K(Adv)
pr ψj

r = ε
(i.p.)
j

∑
r

Dprψ
j
r , (3)

where −ε(i.p.)
j = I

(i.p.)
j (j = 1, . . .) are ionization po-

tentials. From the Koopmans’ equation the basis set for

simultaneous diagonal decompositions of {Dpq} and
{K(Adv)

pr } are obtained:

Dpq =
∑
jrs

ψj
rDprDsqψ

j
s , (4)

K(Adv)
pq =

∑
jrs

ψj
rDprε

(i.p.)
j Dsqψ

j
s . (5)

A similar equation is also valid for the retarded (par-
ticle) Koopmans’ matrix∑

r

K(Ret)
pr φj

r =
∑
r

〈|
[
ap, Ĥ

]
a†r |〉φj

r

= ε
(e.a.)
j

∑
r

D(Ret)
pr φj

r , (6)

where ε(e.a.)
j (j = 1, . . .) are the electron affinities.

The advanced one-particle Green’s function in ex-
tended Koopmans’ approximation is

G(Adv)
pq (ε) =

∑
jrs

ψj
rDpr

1

ε− ε
(i.p.)
j − i0

Dsqψ
j
s . (7)

Similar to the electron density and the advanced
Koppmans matrix the complement electron density and
the retarded Koopmans’ matrix are obtained as zero-
and first-order momenta of advanced and retarded one-
particle Green’s function.

After this we can write the one-particle Green’s
function in Koopmans’ approximation:

G(Koopm)
pq (ε) =

∑
j

(
Ψj

p

1

ε− ε
(i.p.)
j − i0

Ψj
q

+ Φj
p

1

ε− ε
(e.a.)
j + i0

Φj
q

)
. (8)

From the Eqs. (4), (5), and (7) it is seen that

(D̃)pq = Dpq =
1

2πi

∮
l+
G(Koopm)

pq (ε) dε , (9)

(K̃)pq = Kpq =
1

2πi

∮
l+
εG(Koopm)

pq (ε) dε , (10)

and the energy of the many-particle electron system can
be written as

E =
1
2
Tr

(
K̃ + hD̃

)
. (11)
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2.2. Truncated irreducible mass-operators and
perturbation corrections

Equations (8), (9), (10), and (11) of the many-
particle quantum mechanics (MPQM) can be used for
self-consistent solutions of the Dyson equation for the
one-particle Green’s function

G̃ = G̃o + G̃oM̃
(irr)(G̃)G̃ , (12)

where the irreducible mass operator M̃ (irr)(G̃) is ex-
pressed as a sum of all irreducible Feynman diagrams
with the one-particle Green’s function as the electron
propagator. The Feynman diagram of the lth order is
called here irreducible if it does not contain parts of the
lower orders (< l). From Eq. (11) and from the Dyson
equation for the one-particle Green’s function (12) it
follows that

E =
1
2
Tr

∮
l+

(ε+ ĥ)G̃(ε) dε

=
1
2
Tr

∮
l+

[
M̂ (irr)(G̃(ε)) + 2ĥ

]
G̃(ε) dε . (13)

Iterative solution of the Dyson equation (12) with the
complete irreducible mass-operator obviously results
in the perturbation series in powers of interaction with
the propagators of non-interacting electrons. In prac-
tice only truncated irreducible mass-operators M̃(irr)

are used in (12) instead of M̃ (irr), then the iterations of
the Dyson equation (12) lead to an expansion of a par-
tially dressed one-particle Green’s function, therefore
the solutions of the Dyson equations with the truncated
mass-operator correspond to partial summations in the
initial perturbation series for the Green’s function G̃.
We obtain self-consistent solutions G̃M of the Dyson
equation with the truncated mass-operator M̃(irr) as the
expansion (8) using Koopmans’ SCF procedure [8, 9]
and call it the Koopmans’ approximation. In Koop-
mans’ SCF iterations of the Dyson equation at each
step the Koopmans’ operator is taken from the previ-
ous step according to Eq. (10). The density matrix in
this approximation is written as

D̃ =
1
2

∮
l+

[
(G̃o(ε)M̃(irr)(G̃(Koopm)(ε))G̃(Koopm)(ε)

+ G̃(Koopm)(ε)M̃(irr)(G̃(Koopm)(ε))G̃o(ε)
]
dε . (14)

If we use for G̃M(ε) the Koopmans’ approximation
G̃(Koopm)(ε), the energy EM is calculated as

EM = Tr
1
2

∮
l+

(ε+ ĥ)G̃(Koopm)(ε) dε

=
1
2
Tr

∮
l+

[
M̂(irr)(G̃(Koopm)(ε))+2ĥ

]
G̃(Koopm)(ε) dε

=
1
2
Tr

∮
l+

[
M̂(irr)(G̃(Koopm)(ε))+2ĥ

]
G̃(Koopm)(ε) dε .

(15)

The main pecularity of this application of Koop-
mans’ SCF procedure is that the Koopmans’ matrix cal-
culated as Eq. (10) is non-Hermitean and therefore in
Koopmans’ SCF iterations the singular value decom-
position is applied. When in MPQM the mass-operator
is truncated to the irreducible terms of the first order,
then the Koopmans’ SCF solution of the Dyson equa-
tion corresponds to the Hartree–Fock approximation of
the one-electron Green’s function.

3. Post-Dirac–Fock estimates of radiative
self-energy correction

The Koopmans’ SCF algorithm to obtain a self-
consistent solution of the Dyson equation for the one-
particle Green’s function in quantum mechanics can
be extended to QED. In QED the truncated mass-
operators have to be renormalized. The ultraviolet di-
vergent terms are isolated by the expansion in powers
of the external field potential. Then the divergent terms
are combined with the corresponding counter-terms.
The direct use of the external potential expansion for
the mass-operator renormalization has become practi-
cal due to recent developments of the numerical meth-
ods (B-spline technique) and the space discretization.
The infrared divergences cancel in the sum of zero- and
one-potential terms. The Koopmans’ SCF solution of
the Dyson equation with renormalized mass-operator
we call post-Dirac–Fock method (PDF).

In this section we use a simplified version of this
algorithm for the Dyson equation in QED to calculate
the lowest order radiative QED corrections for valence
electron of the neutral Roentgenium (Rg). The lowest-
order valence electron radiative corrections have been
estimated in the paper [6]. As shown in [6], the conven-
tional DF method is not enough for adequate estimates
of the self-energy (SE) terms.

Here we use PDF Eq. (15) and the corresponding
expression for the DF energy to calculate the radiative
correction as the difference of the PDF and DF ener-
gies. The ε-plane singularities of the integrands orig-
inate from the singularities of the electron and pho-
ton propagators. The contour l+ of the integrals in
Eqs. (9)–(15) runs in the complex energy plane around
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Fig. 1. Expansion of the electron mass-operator M̃ graph in powers of the effective interaction with the external field Veff . The double
solid line denotes the electron propagator in the external field, the ordinary solid line denotes the free electron propagator, and the wavy line

denotes the photon propagator. The dashed line with the cross at the end denotes the interaction with the field Veff .

the isolated poles of the integrands and around the poles
of M̂(irr)(G̃(Koopm)(ε)). This factor in the integrands
has poles on the boundaries of the branch cuts. Practi-
cally, we will use the loop around the pole within en-
ergy level of the valence electron as it is following from
the perturbation theory.

We start the calculation of the PDF energy with the
renormalization, which is done via the potential expan-
sion of the mass-operator. The Feynman graphs rep-
resenting the expansion of M̃ in the vicinity of the
bound electron energy in the state a are shown in Fig. 1.
The ultraviolet divergences appear respectively in the
first two terms, called “zero-potential” (z), M̃

(z)
a , and

“one-potential” (o), M̃
(o)
a , terms. The third term, so-

called “many-potential” (m) term M̃
(m)
a , is finite but it

is most complicated one for numerical evaluations. The
evaluation of this term together with renormalization
may be achieved according to the scheme presented
in [10]. The renormalized radiative energy shift (SE)
of the one-electron energy level a in the energy (15)
appears as

∆ESE(ren)
a = ∆Eren(z)

a +∆Eren(o)
a +∆Eren(m)

a , (16)

where this quantity includes the occupation number of
this one-electron level.

In order to calculate the potential expansion in our
simplified PDF procedure we use the local effective po-
tential Veff calculated via the DF wave functions:

Veff(r) =

(
d
dr

− κ

r

)
FDF(r) + εGDF(r)

GDF(r)
, (17)

where GDF and FDF are the large and the small radial
components of Dirac wave function, ε = Enκ − c2.
At each step of conventional DF procedure the Veff,i(r)
is calculated for every orbital χi state function as done
in [6].

χ̃i = χi + δχi

Fig. 2. The integration over the frequency of the virtual photon ω
in many-potential term. The contour of integration is a solid line.

with

δχi =
∑
n6=i

〈χn|∆M̃SE(ren)|χi〉
εi − εn

χn , (18)

where MSE(ren) ≡ ∆ESE(ren)
a only and the summation

is done over all one-electron orbitals of atom. To some
extent it is a redefinition of the Fock operator

f̃ = h̃+
∑
j

[
J̃j − K̃j

]
in PDF: at each step of DF procedure for each electron
the new term ∆M̃SE(ren) is added. However, this is a
simplification of PDF method, where fractional occu-
pation numbers appear and this feature of PDF is seen
from the one-electron density (14).

In comparison with of the conventional DF method,
Eq. (15) reveals additional pole terms in ∆M̂SE(ren) ×
(G̃(Koopm)(ε)). It follows from the definition of
Green’s function and from Eq. (15). During the cal-
culation of the so-called “many-potential term” by the
method from Ref. [10], the contour of integration over
the virtual photon frequency ω will run around the
“pole” Ea − ω, as shown in Fig. 2.

Finally, taking into account poles of the “many-
potential term”, we can write their complete contribu-
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Table 1. The binding energy and radiative
correction for the valence electron in Rg

(in a. u.).

Rg (7s)

δε
(3)PT
ns 3.26·10−3 from [6]

δε
(3)DF
ns 3.75·10−3 from [6]

ε
(1)
ns 0.42852

δε
(3)PDF
ns 0.03·10−3

tion to the radiation correction for one-electron energy
as follows:

lim
ω→0

∫
dx1 dx2 dx3 dx4 Ψa(x1) γµGo(x1, x2)

× Veff(x2)
∑
n

Ψn(x3) Ψn(x2)
EA − ω − En − i0

Go(x3, x4)

× Veff(x3) γν Ψa(x4)Dν
µ(x1 − x4, ω) , (19)

where Ψn(x) denotes the Dirac state function n,
D(x1 − x4, ω) is the photon propagator, and the sum∑

n

Ψn(x3) Ψn(x2)
EA − ω − En − i0

is the Koopmans’ expansion for the advanced one-
electron propagator. This term should be added to the
pure DF value of SE correction.

4. Numerical result and summary

In Table 1 we present the estimates of the radiative
corrections for the valence electron of the neutral Rg.
Some estimates are taken from [6] and they are com-
plemented with the new data obtained within simpli-
fied approach to our PDF method. The first two val-
ues with the SE correction (16) are obtained within dif-
ferent modifications of the DF procedure. The values
δε

(3)PT
ns were obtained first in [11], and later they were

verified several times (see for example in [12]). The
next line in Table 1 is the binding energy for the 7s
valence electron in the DF approach with the Fermi nu-
clear charge distribution. This line was included in Ta-
ble 1 to demonstrate that the QED effects are not at all
negligible in the studies of the valence states in such
systems. The result which presents an estimate of the
Eq. (15) is shown on the last line.

The Green’s function method provides a straightfor-
ward instrumentation for one-particle description of in-

teracting particles (density matrix, self-energy, correla-
tion interaction) within QED. The electrons of atoms
or molecules in QED are in mixed state and therefore
the pure states of the quantum mechanics have the sta-
tistical interpretation. In this work we have outlined an
approach which relates to the variational approach to
the MCSCF treatment of correlation and which is based
on the extended Koopmans’ theorem. We have shown
that the Koopmans’ approximation makes it possible
to obtain the self-consistent approximations for one-
particle Green’s functions and to extend this algorithm
to QED. In this way some basic properties of the MC-
SCF Green’s function are preserved and it can be used
in many applications.

Acknowledgement

The authors acknowledge the financial support from
the Ministry of Education and Science of Russian Fed-
eration (Program for Development of Scientific Poten-
tial of High School, Grant No. 2.1.1/1136).

References

[1] K. Pitzer, J. Chem. Phys. 63, 1033 (1975).
[2] N.S. Mosyagin, T.A. Isaev, and A.V. Titov, Chem.

Phys. 124, 224302 (2006).
[3] N.S. Mosyagin, A.N. Petrov, A.V. Titov, and I.I. Tupi-

tsyn, in: Recent Advances in the Theory of Chemi-
cal and Physical Systems, eds. J.-P. Julien, J. Maruani,
D. Mayou, S. Wilson, and G. Delgado-Barrio, Progress
in Theoretical Chemistry and Physics, Vol. 15, Part II
(Springer, Berlin, 2006) pp. 229–252.

[4] B. Fricke and G. Soff, At. Data Nucl. Data Tables 19,
83 (1977).

[5] E. Eliav, U. Kaldor, Y. Ishikawa, M. Seth, and
P. Pyykkö, Phys. Rev. A 53, 3926 (1994).

[6] I. Goidenko, Eur. Phys. J. D 55, 35 (2009).
[7] V.V. Flambaum and J.S.M. Ginges, Phys. Rev. A 72,

052115 (2005).
[8] S.I. Gusarov, I.A. Goidenko, Yu.Yu. Dmitriev, and

L.N. Labzowsky, Int. J. Quant. Chem. 107, 2616
(2006).

[9] S. Gusarov, T.A. Fedorova, Yu.Yu. Dmitriev, and
A. Kovalenko, Int. J. Quant. Chem. 109, 1672 (2009).

[10] N.J. Snyderman, Ann. Phys. 211, 43 (1991).
[11] L.N. Labzowsky, I.A. Goidenko, M. Tokman, and

P. Pyykkö, Phys. Rev. A 59, 2707 (1999).
[12] P. Indelicato, J.P. Santos, S. Boucard, and J.-P. De-

sclaux, Eur. Phys. J. D 45, 155 (2007).

http://dx.doi.org/10.1063/1.431398
http://www.springer.com/chemistry/physical+chemistry/book/978-1-4020-4527-1
http://www.springer.com/chemistry/physical+chemistry/book/978-1-4020-4527-1
http://www.springer.com/chemistry/physical+chemistry/book/978-1-4020-4527-1
http://www.springer.com/chemistry/physical+chemistry/book/978-1-4020-4527-1
http://www.springer.com/chemistry/physical+chemistry/book/978-1-4020-4527-1
http://www.springer.com/chemistry/physical+chemistry/book/978-1-4020-4527-1
http://dx.doi.org/10.1016/0092-640X(77)90010-9
http://dx.doi.org/10.1016/0092-640X(77)90010-9
http://dx.doi.org/10.1103/PhysRevA.53.3926
http://dx.doi.org/10.1103/PhysRevA.53.3926
http://dx.doi.org/10.1140/epjd/e2009-00216-4
http://dx.doi.org/10.1103/PhysRevA.72.052115
http://dx.doi.org/10.1103/PhysRevA.72.052115
http://dx.doi.org/10.1002/qua.21431
http://dx.doi.org/10.1002/qua.21431
http://dx.doi.org/10.1002/qua.21431
http://dx.doi.org/10.1002/qua.22007
http://dx.doi.org/10.1002/qua.22007
http://dx.doi.org/10.1016/0003-4916(91)90192-B
http://dx.doi.org/10.1103/PhysRevA.59.2707
http://dx.doi.org/10.1103/PhysRevA.59.2707
http://dx.doi.org/10.1140/epjd/e2007-00229-y
http://dx.doi.org/10.1140/epjd/e2007-00229-y


24 I.A. Goydenko and Yu.Yu. Dmitriev / Lith. J. Phys. 51, 19–24 (2011)

KVANTINĖS ELEKTRODINAMIKOS PATAISOS SUNKIŲ IR YPAČ SUNKIŲ ATOMŲ
VALENTINIAM ELEKTRONUI

I.A. Goydenko, Yu.Yu. Dmitriev

Sankt Peterburgo valstybinio universiteto Fizikos katedra, Sankt Peterburgas, Rusija

Santrauka
Radiacinės kvantinės elektrodinamikos (KED) pataisos neutra-

laus Rg (Z = 111) atomo valentiniam elektronui įvertintos „vėles-
nio nei Dirako ir Foko“ metodo požiūriu. Šiame metode elekt-
rono propagatorių KED diagramose pasiūlyta aproksimuoti pagal

Koopmansą. Šiam ypač sunkiam atomui toks skaičiavimas atliktas
pirmą kartą. Rezultatai papildo diskusiją apie KED pataisų ypač
sunkiems atomams tikslumą. Jie taip pat rodo šiuolaikinių teorinių
skaičiavimų ypač sunkiems atomams tikslumo ribą.


